221. 最大正方形

87 篇文章 0 订阅
33 篇文章 5 订阅
本文解析了如何使用动态规划解决LeetCode问题221,即在矩阵中寻找最大的全1正方形边长。通过状态转移方程dp[i][j]=min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])+1,展示了求解过程和关键代码实现。
摘要由CSDN通过智能技术生成

原题链接:221. 最大正方形

solution: 动态规划

力扣题解

状态表示:dp[i][j]表示以i,j为正方形右下角的最大边长

状态计算: dp[i][j] = min(dp[i - 1][j],dp[i][j - 1],dp[i - 1][j - 1]) + 1

class Solution {
public:
    //dp[i][j]:表示以i,j为正方形右下角的最大边长
    int maximalSquare(vector<vector<char>>& matrix) {
        int m = matrix.size();
        int n = matrix[0].size();
        vector<vector<int>> dp(m + 1, vector<int> (n + 1));
        int maxlength = 0;  //最大边长
        for(int i = 1;i <= m;i++)
            for(int j = 1;j <= n;j++){
                if(matrix[i - 1][j - 1] == '1') {
                    dp[i][j] = min(min(dp[i - 1][j],dp[i][j - 1]),dp[i - 1][j - 1]) + 1;
                    maxlength = max(maxlength,dp[i][j]);
                }
            }
        return maxlength * maxlength;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值