目录
一、线性回归概述:
上文 : https://blog.csdn.net/qq_42185999/article/details/102941535 中我们推导了线性回归中最简单的情形:即输入属性的目只有一个。下面我们来推导更一般的情形:即样本由 d 个属性描述。
给定数据集 , 其中 , ,线性回归试图学得: ,使得 . 这称为 “多元线性回归” 。
为了便于讨论,我们把 w 和 b 吸收入向量形式 ,
=
=
=
=
=
=
相应的,把数据集 D 表示为一个 m*(d+1) 大小的矩阵 X ,其中每行对应于一个示例,该行前 d 个元素对应于示例的 d 个属性值,最后一个元素恒置为 1 ,即:
再把标记也写成向量形式 :
则损失函数: =
=
=
下面对上式进行化简:
又因为:
(这里不大明白的话可以往上翻翻)
所以:
=
=
(此即为西瓜书式 3.9 后面的部分)
二、数学知识储备:
凸集定义:
设集合 ,如果对任意的 与任意的 , 有 ,则称集合 D 是凸集。
凸集的几何意义是:若两个点属于此集合,则这两点连线上的任意一点均属于此集合。
梯度定义:
设 n 元函数 对自变量 的各分量 的偏导数 (i = 1,2 , ... , n) 都存在,则称函数 在 x 处一阶可导,并称向量
为函数 在 x 处的一阶导数或梯度,记为 (列向量)
Hessian(海塞)矩阵定义:
设 n 元函数 对自变量 的各分量 的二级偏导数 (i = 1,2 , ... , n ; j = 1,2 , ... , n) 都存在,则称函数 在点 x 处二阶可导,并称矩阵
为 在 x 处的二阶导数或Hessian矩阵,记为 ,若 对 x 各变元的所有二阶偏导数都连续 , 则 , 此时 为对称矩阵。
多元实值函数凹凸性判定定理:
设 是非空开凸集, , 且 在 D 上二阶连续可微,如果 的 Hessian矩阵 在 D 上是正定的,则 是 D 上的严格凸函数。
凸充分性定理:
若 是凸函数,且 一阶连续可微,则 是全局解的充分必要条件是 , 其中 为 关于 x 的一阶导数(也称梯度)。
三、证明损失函数 是关于 的凸函数 :
=
=
=
=
【标量-向量】的矩阵微分公式为:
其中, 为 n 维列向量, y 为 x 的 n 元标量函数。
(1)
(分母布局)【默认采用】
(2)
(分子布局)
由【标量-向量】的矩阵微分公式可推得:
同理,可推得:
下面简单推导一下:
=
=
=
=
=
=
=
由矩阵微分公式 , 可得:
=
= (此即为西瓜书式 3.10 )
=
=
=
= (此即为Hessian(海塞)矩阵 )
Hessian矩阵 在 D 上是正定的,所以损失函数 是关于 的凸函数 。
四、求解 :
令一阶导数等于 0 解出 :
= = 0
= 0
=
= (此即为西瓜书式 3.11 )