二叉树的三叉链表存储结构比二叉链表多一个指向双亲结点的指针,因此,求双亲和左右兄弟都很容易。但在构造二叉树时要另给双亲指针赋值,从而增加了复杂度。由于三叉链表和二叉链表在结构上的相似性,它们有些相应的基本操作也很类似。
二叉树的三叉链表存储结构:
右图为左图的三叉链表存储结构:
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */
#include<malloc.h> /* malloc()等 */
#include<stdio.h> /* EOF(=^Z或F6),NULL */
#include<process.h> /* exit() */
/* 函数结果状态代码 */
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
#define CHAR /* 字符型 */
/*#define INT /* 整型(二者选一) */
#ifdef CHAR
typedef char TElemType;
TElemType Nil = ' '; /* 字符型以空格符为空 */
#endif
#ifdef INT
typedef int TElemType;
TElemType Nil = 0; /* 整型以0为空 */
#endif
/* --------------------------------- 二叉树的三叉链表存储表示 --------------------------------*/
typedef struct BiTPNode
{
TElemType data;
struct BiTPNode *parent, *lchild, *rchild; /* 双亲、左右孩子指针 */
}BiTPNode, *BiPTree;
/* ---------------------------------------------------------------------------------------------*/
/* -------------------------------- 二叉树的三叉链表存储的基本操作(21个) -------------------------------*/
Status InitBiTree(BiPTree *T)
{ /* 操作结果: 构造空二叉树T */
*T = NULL;
return OK;
}
void DestroyBiTree(BiPTree *T)
{ /* 初始条件: 二叉树T存在。操作结果: 销毁二叉树T */
if (*T) /* 非空树 */
{
if ((*T)->lchild) /* 有左孩子 */
DestroyBiTree(&(*T)->lchild); /* 销毁左孩子子树 */
if ((*T)->rchild) /* 有右孩子 */
DestroyBiTree(&(*T)->rchild); /* 销毁右孩子子树 */
free(*T); /* 释放根结点 */
*T = NULL; /* 空指针赋0 */
}
}
void Create(BiPTree *T) /* CreateBiTree()调用 */
{ /* 按先序次序输入二叉树中结点的值(可为字符型或整型,在主程中定义), */
/* 构造仅缺双亲指针的三叉链表表示的二叉树T。变量Nil表示空(子)树 */
TElemType ch;
#ifdef CHAR
scanf("%c", &ch);
#endif
#ifdef INT
scanf("%d", &ch);
#endif
if (ch == Nil) /* 空 */
*T = NULL;
else
{
*T = (BiPTree)malloc(sizeof(BiTPNode));
if (!*T)
exit(OVERFLOW);
(*T)->data = ch; /* 生成根结点 */
Create(&(*T)->lchild); /* 构造左子树 */
Create(&(*T)->rchild); /* 构造右子树 */
}
}
typedef BiPTree QElemType; /* 设队列元素为二叉树的指针类型 */
/* ------------------单链队列-队列的链式存储结构 -----------------------*/
typedef struct QNode
{
QElemType data;
struct QNode *next;
}QNode, *QueuePtr;
typedef struct
{
QueuePtr front, rear; /* 队头、队尾指针 */
}LinkQueue;
/* ------------------------------------------------------------------------*/
/* ------------------- 需要用到的链队列的基本操作 ----------------------*/
Status InitQueue(LinkQueue *Q)
{ /* 构造一个空队列Q */
(*Q).front = (*Q).rear = (QueuePtr)malloc(sizeof(QNode));
if (!(*Q).front)
exit(OVERFLOW);
(*Q).front->next = NULL;
return OK;
}
Status QueueEmpty(LinkQueue Q)
{ /* 若Q为空队列,则返回TRUE,否则返回FALSE */
if (Q.front == Q.rear)
return TRUE;
else
return FALSE;
}
Status EnQueue(LinkQueue *Q, QElemType e)
{ /* 插入元素e为Q的新的队尾元素 */
QueuePtr p = (QueuePtr)malloc(sizeof(QNode));
if (!p) /* 存储分配失败 */
exit(OVERFLOW);
p->data = e;
p->next = NULL;
(*Q).rear->next = p;
(*Q).rear = p;
return OK;
}
Status DeQueue(LinkQueue *Q, QElemType *e)
{ /* 若队列不空,删除Q的队头元素,用e返回其值,并返回OK,否则返回ERROR */
QueuePtr p;
if ((*Q).front == (*Q).rear)
return ERROR;
p = (*Q).front->next;
*e = p->data;
(*Q).front->next = p->next;
if ((*Q).rear == p)
(*Q).rear = (*Q).front;
free(p);
return OK;
}
/* -----------------------------------------------------------------------*/
Status CreateBiTree(BiPTree *T)
{ /* 按先序次序输入二叉树中结点的值(可为字符型或整型,在主程中定义), */
/* 构造三叉链表表示的二叉树T */
LinkQueue q;
QElemType a;
Create(T); /* 构造二叉树(缺双亲指针) */
if (*T) /* 非空树 */
{
(*T)->parent = NULL; /* 根结点的双亲为"空" */
InitQueue(&q); /* 初始化队列 */
EnQueue(&q, *T); /* 根指针入队 */
while (!QueueEmpty(q)) /* 队不空 */
{
DeQueue(&q, &a); /* 出队,队列元素赋给a */
if (a->lchild) /* 有左孩子 */
{
a->lchild->parent = a; /* 给左孩子的双亲指针赋值 */
EnQueue(&q, a->lchild); /* 左孩子入队 */
}
if (a->rchild) /* 有右孩子 */
{
a->rchild->parent = a; /* 给右孩子的双亲指针赋值 */
EnQueue(&q, a->rchild); /* 右孩子入队 */
}
}
}
return OK;
}
#define ClearBiTree DestroyBiTree
Status BiTreeEmpty(BiPTree T)
{ /* 初始条件: 二叉树T存在。操作结果: 若T为空二叉树,则返回TRUE,否则FALSE */
if (T)
return FALSE;
else
return TRUE;
}
int BiTreeDepth(BiPTree T)
{ /* 初始条件: 二叉树T存在。操作结果: 返回T的深度 */
int i, j;
if (!T)
return 0;
if (T->lchild)
i = BiTreeDepth(T->lchild);
else
i = 0;
if (T->rchild)
j = BiTreeDepth(T->rchild);
else
j = 0;
return i > j ? i + 1 : j + 1;
}
TElemType Root(BiPTree T)
{ /* 初始条件: 二叉树T存在。操作结果: 返回T的根 */
if (T)
return T->data;
else
return Nil;
}
TElemType Value(BiPTree p)
{ /* 初始条件: 二叉树T存在,p指向T中某个结点 */
/* 操作结果: 返回p所指结点的值 */
return p->data;
}
void Assign(BiPTree p, TElemType value)
{ /* 给p所指结点赋值为value */
p->data = value;
}
BiPTree Point(BiPTree T, TElemType e)
{ /* 返回二叉树T中指向元素值为e的结点的指针。加 */
LinkQueue q;
QElemType a;
if (T) /* 非空树 */
{
InitQueue(&q); /* 初始化队列 */
EnQueue(&q, T); /* 根结点入队 */
while (!QueueEmpty(q)) /* 队不空 */
{
DeQueue(&q, &a); /* 出队,队列元素赋给a */
if (a->data == e)
return a;
if (a->lchild) /* 有左孩子 */
EnQueue(&q, a->lchild); /* 入队左孩子 */
if (a->rchild) /* 有右孩子 */
EnQueue(&q, a->rchild); /* 入队右孩子 */
}
}
return NULL;
}
TElemType Parent(BiPTree T, TElemType e)
{ /* 初始条件: 二叉树T存在,e是T中某个结点 */
/* 操作结果: 若e是T的非根结点,则返回它的双亲,否则返回"空" */
BiPTree a;
if (T) /* 非空树 */
{
a = Point(T, e); /* a是结点e的指针 */
if (a&&a != T) /* T中存在结点e且e是非根结点 */
return a->parent->data; /* 返回e的双亲的值 */
}
return Nil; /* 其余情况返回空 */
}
TElemType LeftChild(BiPTree T, TElemType e)
{ /* 初始条件: 二叉树T存在,e是T中某个结点 */
/* 操作结果: 返回e的左孩子。若e无左孩子,则返回"空" */
BiPTree a;
if (T) /* 非空树 */
{
a = Point(T, e); /* a是结点e的指针 */
if (a&&a->lchild) /* T中存在结点e且e存在左孩子 */
return a->lchild->data; /* 返回e的左孩子的值 */
}
return Nil; /* 其余情况返回空 */
}
TElemType RightChild(BiPTree T, TElemType e)
{ /* 初始条件: 二叉树T存在,e是T中某个结点 */
/* 操作结果: 返回e的右孩子。若e无右孩子,则返回"空" */
BiPTree a;
if (T) /* 非空树 */
{
a = Point(T, e); /* a是结点e的指针 */
if (a&&a->rchild) /* T中存在结点e且e存在右孩子 */
return a->rchild->data; /* 返回e的右孩子的值 */
}
return Nil; /* 其余情况返回空 */
}
TElemType LeftSibling(BiPTree T, TElemType e)
{ /* 初始条件: 二叉树T存在,e是T中某个结点 */
/* 操作结果: 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空" */
BiPTree a;
if (T) /* 非空树 */
{
a = Point(T, e); /* a是结点e的指针 */
if (a&&a != T && a->parent->lchild&&a->parent->lchild != a) /* T中存在结点e且e存在左兄弟 */
return a->parent->lchild->data; /* 返回e的左兄弟的值 */
}
return Nil; /* 其余情况返回空 */
}
TElemType RightSibling(BiPTree T, TElemType e)
{ /* 初始条件: 二叉树T存在,e是T中某个结点 */
/* 操作结果: 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空" */
BiPTree a;
if (T) /* 非空树 */
{
a = Point(T, e); /* a是结点e的指针 */
if (a&&a != T && a->parent->rchild&&a->parent->rchild != a) /* T中存在结点e且e存在右兄弟 */
return a->parent->rchild->data; /* 返回e的右兄弟的值 */
}
return Nil; /* 其余情况返回空 */
}
Status InsertChild(BiPTree p, int LR, BiPTree c) /* 形参T无用 */
{ /* 初始条件: 二叉树T存在,p指向T中某个结点,LR为0或1,非空二叉树c与T */
/* 不相交且右子树为空 */
/* 操作结果: 根据LR为0或1,插入c为T中p所指结点的左或右子树。p所指结点 */
/* 的原有左或右子树则成为c的右子树。 */
if (p) /* p不空 */
{
if (LR == 0)
{
c->rchild = p->lchild;
if (c->rchild) /* c有右孩子(p原有左孩子) */
c->rchild->parent = c;
p->lchild = c;
c->parent = p;
}
else /* LR==1 */
{
c->rchild = p->rchild;
if (c->rchild) /* c有右孩子(p原有右孩子) */
c->rchild->parent = c;
p->rchild = c;
c->parent = p;
}
return OK;
}
return ERROR; /* p空 */
}
Status DeleteChild(BiPTree p, int LR) /* 形参T无用 */
{ /* 初始条件: 二叉树T存在,p指向T中某个结点,LR为0或1 */
/* 操作结果: 根据LR为0或1,删除T中p所指结点的左或右子树 */
if (p) /* p不空 */
{
if (LR == 0) /* 删除左子树 */
ClearBiTree(&p->lchild);
else /* 删除右子树 */
ClearBiTree(&p->rchild);
return OK;
}
return ERROR; /* p空 */
}
void PreOrderTraverse(BiPTree T, Status(*Visit)(BiPTree))
{ /* 先序递归遍历二叉树T */
if (T)
{
Visit(T); /* 先访问根结点 */
PreOrderTraverse(T->lchild, Visit); /* 再先序遍历左子树 */
PreOrderTraverse(T->rchild, Visit); /* 最后先序遍历右子树 */
}
}
void InOrderTraverse(BiPTree T, Status(*Visit)(BiPTree))
{ /* 中序递归遍历二叉树T */
if (T)
{
InOrderTraverse(T->lchild, Visit); /* 中序遍历左子树 */
Visit(T); /* 再访问根结点 */
InOrderTraverse(T->rchild, Visit); /* 最后中序遍历右子树 */
}
}
void PostOrderTraverse(BiPTree T, Status(*Visit)(BiPTree))
{ /* 后序递归遍历二叉树T */
if (T)
{
PostOrderTraverse(T->lchild, Visit); /* 后序遍历左子树 */
PostOrderTraverse(T->rchild, Visit); /* 后序遍历右子树 */
Visit(T); /* 最后访问根结点 */
}
}
void LevelOrderTraverse(BiPTree T, Status(*Visit)(BiPTree))
{ /* 层序遍历二叉树T(利用队列) */
LinkQueue q;
QElemType a;
if (T)
{
InitQueue(&q);
EnQueue(&q, T);
while (!QueueEmpty(q))
{
DeQueue(&q, &a);
Visit(a);
if (a->lchild != NULL)
EnQueue(&q, a->lchild);
if (a->rchild != NULL)
EnQueue(&q, a->rchild);
}
}
}
/* --------------------------------------------------------------------------------------------------*/
Status visitT(BiPTree T)
{
if (T) /* T非空 */
#ifdef CHAR
printf("%c是", T->data);
if (T->parent) /* T有双亲 */
{
printf("%c", T->parent->data);
#endif
#ifdef INT
printf("%d是", T->data);
if (T->parent) /* T有双亲 */
{
printf("%d", T->parent->data);
#endif
if (T->parent->lchild == T)
printf("的左孩子\n");
else
printf("的右孩子\n");
}
else
printf("根结点\n");
return OK;
}
void main()
{
int i;
BiPTree T, c, q;
TElemType e1, e2;
InitBiTree(&T);
printf("构造空二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n", BiTreeEmpty(T), BiTreeDepth(T));
e1 = Root(T);
if (e1 != Nil)
#ifdef CHAR
printf("二叉树的根为: %c\n", e1);
#endif
#ifdef INT
printf("二叉树的根为: %d\n", e1);
#endif
else
printf("树空,无根\n");
#ifdef CHAR
printf("请按先序输入二叉树(如:ab三个空格表示a为根结点,b为左子树的二叉树)\n");
#endif
#ifdef INT
printf("请按先序输入二叉树(如:1 2 0 0 0表示1为根结点,2为左子树的二叉树)\n");
#endif
CreateBiTree(&T);
printf("建立二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n", BiTreeEmpty(T), BiTreeDepth(T));
e1 = Root(T);
if (e1 != Nil)
#ifdef CHAR
printf("二叉树的根为: %c\n", e1);
#endif
#ifdef INT
printf("二叉树的根为: %d\n", e1);
#endif
else
printf("树空,无根\n");
printf("中序递归遍历二叉树:\n");
InOrderTraverse(T, visitT);
printf("后序递归遍历二叉树:\n");
PostOrderTraverse(T, visitT);
scanf("%*c"); /* 吃掉回车符 */
printf("按回车键继续:");
getchar(); /* 暂停输出 */
printf("层序遍历二叉树:\n");
LevelOrderTraverse(T, visitT);
printf("请输入一个结点的值: ");
#ifdef CHAR
scanf("%c", &e1);
#endif
#ifdef INT
scanf("%d", &e1);
#endif
c = Point(T, e1); /* c为e1的指针 */
#ifdef CHAR
printf("结点的值为%c\n", Value(c));
#endif
#ifdef INT
printf("结点的值为%d\n", Value(c));
#endif
printf("欲改变此结点的值,请输入新值: ");
#ifdef CHAR
scanf("%*c%c%*c", &e2);
#endif
#ifdef INT
scanf("%d", &e2);
#endif
Assign(c, e2);
printf("层序遍历二叉树:\n");
LevelOrderTraverse(T, visitT);
e1 = Parent(T, e2);
if (e1 != Nil)
#ifdef CHAR
printf("%c的双亲是%c\n", e2, e1);
#endif
#ifdef INT
printf("%d的双亲是%d\n", e2, e1);
#endif
else
#ifdef CHAR
printf("%c没有双亲\n", e2);
#endif
#ifdef INT
printf("%d没有双亲\n", e2);
#endif
e1 = LeftChild(T, e2);
if (e1 != Nil)
#ifdef CHAR
printf("%c的左孩子是%c\n", e2, e1);
#endif
#ifdef INT
printf("%d的左孩子是%d\n", e2, e1);
#endif
else
#ifdef CHAR
printf("%c没有左孩子\n", e2);
#endif
#ifdef INT
printf("%d没有左孩子\n", e2);
#endif
e1 = RightChild(T, e2);
if (e1 != Nil)
#ifdef CHAR
printf("%c的右孩子是%c\n", e2, e1);
#endif
#ifdef INT
printf("%d的右孩子是%d\n", e2, e1);
#endif
else
#ifdef CHAR
printf("%c没有右孩子\n", e2);
#endif
#ifdef INT
printf("%d没有右孩子\n", e2);
#endif
e1 = LeftSibling(T, e2);
if (e1 != Nil)
#ifdef CHAR
printf("%c的左兄弟是%c\n", e2, e1);
#endif
#ifdef INT
printf("%d的左兄弟是%d\n", e2, e1);
#endif
else
#ifdef CHAR
printf("%c没有左兄弟\n", e2);
#endif
#ifdef INT
printf("%d没有左兄弟\n", e2);
#endif
e1 = RightSibling(T, e2);
if (e1 != Nil)
#ifdef CHAR
printf("%c的右兄弟是%c\n", e2, e1);
#endif
#ifdef INT
printf("%d的右兄弟是%d\n", e2, e1);
#endif
else
#ifdef CHAR
printf("%c没有右兄弟\n", e2);
#endif
#ifdef INT
printf("%d没有右兄弟\n", e2);
#endif
InitBiTree(&c);
printf("构造一个右子树为空的二叉树c:\n");
#ifdef CHAR
printf("请先序输入二叉树(如:ab三个空格表示a为根结点,b为左子树的二叉树)\n");
#endif
#ifdef INT
printf("请先序输入二叉树(如:1 2 0 0 0表示1为根结点,2为左子树的二叉树)\n");
#endif
CreateBiTree(&c);
printf("先序递归遍历二叉树c:\n");
PreOrderTraverse(c, visitT);
printf("树c插到树T中,请输入树T中树c的双亲结点 c为左(0)或右(1)子树: ");
#ifdef CHAR
scanf("%*c%c%d", &e1, &i);
#endif
#ifdef INT
scanf("%d%d", &e1, &i);
#endif
q = Point(T, e1);
InsertChild(q, i, c);
printf("先序递归遍历二叉树:\n");
PreOrderTraverse(T, visitT);
printf("删除子树,请输入待删除子树的双亲结点 左(0)或右(1)子树: ");
#ifdef CHAR
scanf("%*c%c%d", &e1, &i);
#endif
#ifdef INT
scanf("%d%d", &e1, &i);
#endif
q = Point(T, e1);
DeleteChild(q, i);
printf("先序递归遍历二叉树:\n");
PreOrderTraverse(T, visitT);
DestroyBiTree(&T);
}
运行结果: