二叉树的三叉链表存储表示 (第六章 P126)

 

二叉树的三叉链表存储结构比二叉链表多一个指向双亲结点的指针,因此,求双亲和左右兄弟都很容易。但在构造二叉树时要另给双亲指针赋值,从而增加了复杂度。由于三叉链表和二叉链表在结构上的相似性,它们有些相应的基本操作也很类似。

 

二叉树的三叉链表存储结构:
 

 

右图为左图的三叉链表存储结构:

 
      

 

 

typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */

#include<malloc.h> /* malloc()等 */
#include<stdio.h> /* EOF(=^Z或F6),NULL */
#include<process.h> /* exit() */

/* 函数结果状态代码 */
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2 


#define CHAR /* 字符型 */
/*#define INT /* 整型(二者选一) */

#ifdef CHAR
typedef char TElemType;
TElemType Nil = ' '; /* 字符型以空格符为空 */
#endif
#ifdef INT
typedef int TElemType;
TElemType Nil = 0; /* 整型以0为空 */
#endif

/* ---------------------------------  二叉树的三叉链表存储表示    --------------------------------*/

typedef struct BiTPNode
{
	TElemType data;
	struct BiTPNode *parent, *lchild, *rchild; /* 双亲、左右孩子指针 */
}BiTPNode, *BiPTree;

/* ---------------------------------------------------------------------------------------------*/


/* --------------------------------  二叉树的三叉链表存储的基本操作(21个)  -------------------------------*/


Status InitBiTree(BiPTree *T)
{ /* 操作结果: 构造空二叉树T */
	*T = NULL;
	return OK;
}

void DestroyBiTree(BiPTree *T)
{ /* 初始条件: 二叉树T存在。操作结果: 销毁二叉树T */
	if (*T) /* 非空树 */
	{
		if ((*T)->lchild) /* 有左孩子 */
			DestroyBiTree(&(*T)->lchild); /* 销毁左孩子子树 */
		if ((*T)->rchild) /* 有右孩子 */
			DestroyBiTree(&(*T)->rchild); /* 销毁右孩子子树 */
		free(*T); /* 释放根结点 */
		*T = NULL; /* 空指针赋0 */
	}
}

void Create(BiPTree *T) /* CreateBiTree()调用 */
{ /* 按先序次序输入二叉树中结点的值(可为字符型或整型,在主程中定义), */
  /* 构造仅缺双亲指针的三叉链表表示的二叉树T。变量Nil表示空(子)树 */
	TElemType ch;
#ifdef CHAR
	scanf("%c", &ch);
#endif
#ifdef INT
	scanf("%d", &ch);
#endif
	if (ch == Nil) /* 空 */
		*T = NULL;
	else
	{
		*T = (BiPTree)malloc(sizeof(BiTPNode));
		if (!*T)
			exit(OVERFLOW);
		(*T)->data = ch; /* 生成根结点 */
		Create(&(*T)->lchild); /* 构造左子树 */
		Create(&(*T)->rchild); /* 构造右子树 */
	}
}

typedef BiPTree QElemType; /* 设队列元素为二叉树的指针类型 */

/* ------------------单链队列-队列的链式存储结构    -----------------------*/

typedef struct QNode
{
	QElemType data;
	struct QNode *next;
}QNode, *QueuePtr;

typedef struct
{
	QueuePtr front, rear; /* 队头、队尾指针 */
}LinkQueue;

/* ------------------------------------------------------------------------*/

/* -------------------   需要用到的链队列的基本操作  ----------------------*/

Status InitQueue(LinkQueue *Q)
{ /* 构造一个空队列Q */
	(*Q).front = (*Q).rear = (QueuePtr)malloc(sizeof(QNode));
	if (!(*Q).front)
		exit(OVERFLOW);
	(*Q).front->next = NULL;
	return OK;
}

Status QueueEmpty(LinkQueue Q)
{ /* 若Q为空队列,则返回TRUE,否则返回FALSE */
	if (Q.front == Q.rear)
		return TRUE;
	else
		return FALSE;
}

Status EnQueue(LinkQueue *Q, QElemType e)
{ /* 插入元素e为Q的新的队尾元素 */
	QueuePtr p = (QueuePtr)malloc(sizeof(QNode));
	if (!p) /* 存储分配失败 */
		exit(OVERFLOW);
	p->data = e;
	p->next = NULL;
	(*Q).rear->next = p;
	(*Q).rear = p;
	return OK;
}

Status DeQueue(LinkQueue *Q, QElemType *e)
{ /* 若队列不空,删除Q的队头元素,用e返回其值,并返回OK,否则返回ERROR */
	QueuePtr p;
	if ((*Q).front == (*Q).rear)
		return ERROR;
	p = (*Q).front->next;
	*e = p->data;
	(*Q).front->next = p->next;
	if ((*Q).rear == p)
		(*Q).rear = (*Q).front;
	free(p);
	return OK;
}

/* -----------------------------------------------------------------------*/



Status CreateBiTree(BiPTree *T)
{ /* 按先序次序输入二叉树中结点的值(可为字符型或整型,在主程中定义), */
  /* 构造三叉链表表示的二叉树T */
	LinkQueue q;
	QElemType a;
	Create(T); /* 构造二叉树(缺双亲指针) */
	if (*T) /* 非空树 */
	{
		(*T)->parent = NULL; /* 根结点的双亲为"空" */
		InitQueue(&q); /* 初始化队列 */
		EnQueue(&q, *T); /* 根指针入队 */
		while (!QueueEmpty(q)) /* 队不空 */
		{
			DeQueue(&q, &a); /* 出队,队列元素赋给a */
			if (a->lchild) /* 有左孩子 */
			{
				a->lchild->parent = a; /* 给左孩子的双亲指针赋值 */
				EnQueue(&q, a->lchild); /* 左孩子入队 */
			}
			if (a->rchild) /* 有右孩子 */
			{
				a->rchild->parent = a; /* 给右孩子的双亲指针赋值 */
				EnQueue(&q, a->rchild); /* 右孩子入队 */
			}
		}
	}
	return OK;
}

#define ClearBiTree DestroyBiTree

Status BiTreeEmpty(BiPTree T)
{ /* 初始条件: 二叉树T存在。操作结果: 若T为空二叉树,则返回TRUE,否则FALSE */
	if (T)
		return FALSE;
	else
		return TRUE;
}

int BiTreeDepth(BiPTree T)
{ /* 初始条件: 二叉树T存在。操作结果: 返回T的深度 */
	int i, j;
	if (!T)
		return 0;
	if (T->lchild)
		i = BiTreeDepth(T->lchild);
	else
		i = 0;
	if (T->rchild)
		j = BiTreeDepth(T->rchild);
	else
		j = 0;
	return i > j ? i + 1 : j + 1;
}

TElemType Root(BiPTree T)
{ /* 初始条件: 二叉树T存在。操作结果: 返回T的根 */
	if (T)
		return T->data;
	else
		return Nil;
}

TElemType Value(BiPTree p)
{ /* 初始条件: 二叉树T存在,p指向T中某个结点 */
  /* 操作结果: 返回p所指结点的值 */
	return p->data;
}

void Assign(BiPTree p, TElemType value)
{ /* 给p所指结点赋值为value */
	p->data = value;
}

BiPTree Point(BiPTree T, TElemType e)
{ /* 返回二叉树T中指向元素值为e的结点的指针。加 */
	LinkQueue q;
	QElemType a;
	if (T) /* 非空树 */
	{
		InitQueue(&q); /* 初始化队列 */
		EnQueue(&q, T); /* 根结点入队 */
		while (!QueueEmpty(q)) /* 队不空 */
		{
			DeQueue(&q, &a); /* 出队,队列元素赋给a */
			if (a->data == e)
				return a;
			if (a->lchild) /* 有左孩子 */
				EnQueue(&q, a->lchild); /* 入队左孩子 */
			if (a->rchild) /* 有右孩子 */
				EnQueue(&q, a->rchild); /* 入队右孩子 */
		}
	}
	return NULL;
}

TElemType Parent(BiPTree T, TElemType e)
{ /* 初始条件: 二叉树T存在,e是T中某个结点 */
  /* 操作结果: 若e是T的非根结点,则返回它的双亲,否则返回"空" */
	BiPTree a;
	if (T) /* 非空树 */
	{
		a = Point(T, e); /* a是结点e的指针 */
		if (a&&a != T) /* T中存在结点e且e是非根结点 */
			return a->parent->data; /* 返回e的双亲的值 */
	}
	return Nil; /* 其余情况返回空 */
}

TElemType LeftChild(BiPTree T, TElemType e)
{ /* 初始条件: 二叉树T存在,e是T中某个结点 */
  /* 操作结果: 返回e的左孩子。若e无左孩子,则返回"空" */
	BiPTree a;
	if (T) /* 非空树 */
	{
		a = Point(T, e); /* a是结点e的指针 */
		if (a&&a->lchild) /* T中存在结点e且e存在左孩子 */
			return a->lchild->data; /* 返回e的左孩子的值 */
	}
	return Nil; /* 其余情况返回空 */
}

TElemType RightChild(BiPTree T, TElemType e)
{ /* 初始条件: 二叉树T存在,e是T中某个结点 */
  /* 操作结果: 返回e的右孩子。若e无右孩子,则返回"空" */
	BiPTree a;
	if (T) /* 非空树 */
	{
		a = Point(T, e); /* a是结点e的指针 */
		if (a&&a->rchild) /* T中存在结点e且e存在右孩子 */
			return a->rchild->data; /* 返回e的右孩子的值 */
	}
	return Nil; /* 其余情况返回空 */
}

TElemType LeftSibling(BiPTree T, TElemType e)
{ /* 初始条件: 二叉树T存在,e是T中某个结点 */
  /* 操作结果: 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空" */
	BiPTree a;
	if (T) /* 非空树 */
	{
		a = Point(T, e); /* a是结点e的指针 */
		if (a&&a != T && a->parent->lchild&&a->parent->lchild != a) /* T中存在结点e且e存在左兄弟 */
			return a->parent->lchild->data; /* 返回e的左兄弟的值 */
	}
	return Nil; /* 其余情况返回空 */
}

TElemType RightSibling(BiPTree T, TElemType e)
{ /* 初始条件: 二叉树T存在,e是T中某个结点 */
  /* 操作结果: 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空" */
	BiPTree a;
	if (T) /* 非空树 */
	{
		a = Point(T, e); /* a是结点e的指针 */
		if (a&&a != T && a->parent->rchild&&a->parent->rchild != a) /* T中存在结点e且e存在右兄弟 */
			return a->parent->rchild->data; /* 返回e的右兄弟的值 */
	}
	return Nil; /* 其余情况返回空 */
}

Status InsertChild(BiPTree p, int LR, BiPTree c) /* 形参T无用 */
{ /* 初始条件: 二叉树T存在,p指向T中某个结点,LR为0或1,非空二叉树c与T */
  /*           不相交且右子树为空 */
  /* 操作结果: 根据LR为0或1,插入c为T中p所指结点的左或右子树。p所指结点 */
  /*           的原有左或右子树则成为c的右子树。 */
	if (p) /* p不空 */
	{
		if (LR == 0)
		{
			c->rchild = p->lchild;
			if (c->rchild) /* c有右孩子(p原有左孩子) */
				c->rchild->parent = c;
			p->lchild = c;
			c->parent = p;
		}
		else /* LR==1 */
		{
			c->rchild = p->rchild;
			if (c->rchild) /* c有右孩子(p原有右孩子) */
				c->rchild->parent = c;
			p->rchild = c;
			c->parent = p;
		}
		return OK;
	}
	return ERROR; /* p空 */
}

Status DeleteChild(BiPTree p, int LR) /* 形参T无用 */
{ /* 初始条件: 二叉树T存在,p指向T中某个结点,LR为0或1 */
  /* 操作结果: 根据LR为0或1,删除T中p所指结点的左或右子树 */
	if (p) /* p不空 */
	{
		if (LR == 0) /* 删除左子树 */
			ClearBiTree(&p->lchild);
		else /* 删除右子树 */
			ClearBiTree(&p->rchild);
		return OK;
	}
	return ERROR; /* p空 */
}

void PreOrderTraverse(BiPTree T, Status(*Visit)(BiPTree))
{ /* 先序递归遍历二叉树T */
	if (T)
	{
		Visit(T); /* 先访问根结点 */
		PreOrderTraverse(T->lchild, Visit); /* 再先序遍历左子树 */
		PreOrderTraverse(T->rchild, Visit); /* 最后先序遍历右子树 */
	}
}

void InOrderTraverse(BiPTree T, Status(*Visit)(BiPTree))
{ /* 中序递归遍历二叉树T */
	if (T)
	{
		InOrderTraverse(T->lchild, Visit); /* 中序遍历左子树 */
		Visit(T); /* 再访问根结点 */
		InOrderTraverse(T->rchild, Visit); /* 最后中序遍历右子树 */
	}
}

void PostOrderTraverse(BiPTree T, Status(*Visit)(BiPTree))
{ /* 后序递归遍历二叉树T */
	if (T)
	{
		PostOrderTraverse(T->lchild, Visit); /* 后序遍历左子树 */
		PostOrderTraverse(T->rchild, Visit); /* 后序遍历右子树 */
		Visit(T); /* 最后访问根结点 */
	}
}

void LevelOrderTraverse(BiPTree T, Status(*Visit)(BiPTree))
{ /* 层序遍历二叉树T(利用队列) */
	LinkQueue q;
	QElemType a;
	if (T)
	{
		InitQueue(&q);
		EnQueue(&q, T);
		while (!QueueEmpty(q))
		{
			DeQueue(&q, &a);
			Visit(a);
			if (a->lchild != NULL)
				EnQueue(&q, a->lchild);
			if (a->rchild != NULL)
				EnQueue(&q, a->rchild);
		}
	}
}


/* --------------------------------------------------------------------------------------------------*/



Status visitT(BiPTree T)
{
	if (T) /* T非空 */
#ifdef CHAR
		printf("%c是", T->data);
	if (T->parent) /* T有双亲 */
	{
		printf("%c", T->parent->data);
#endif
#ifdef INT
		printf("%d是", T->data);
		if (T->parent) /* T有双亲 */
		{
			printf("%d", T->parent->data);
#endif
			if (T->parent->lchild == T)
				printf("的左孩子\n");
			else
				printf("的右孩子\n");
		}
		else
			printf("根结点\n");
		return OK;
	}

	void main()
	{
		int i;
		BiPTree T, c, q;
		TElemType e1, e2;
		InitBiTree(&T);
		printf("构造空二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n", BiTreeEmpty(T), BiTreeDepth(T));
		e1 = Root(T);
		if (e1 != Nil)
#ifdef CHAR
			printf("二叉树的根为: %c\n", e1);
#endif
#ifdef INT
		printf("二叉树的根为: %d\n", e1);
#endif
		else
			printf("树空,无根\n");
#ifdef CHAR
		printf("请按先序输入二叉树(如:ab三个空格表示a为根结点,b为左子树的二叉树)\n");
#endif
#ifdef INT
		printf("请按先序输入二叉树(如:1 2 0 0 0表示1为根结点,2为左子树的二叉树)\n");
#endif
		CreateBiTree(&T);
		printf("建立二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n", BiTreeEmpty(T), BiTreeDepth(T));
		e1 = Root(T);
		if (e1 != Nil)
#ifdef CHAR
			printf("二叉树的根为: %c\n", e1);
#endif
#ifdef INT
		printf("二叉树的根为: %d\n", e1);
#endif
		else
			printf("树空,无根\n");
		printf("中序递归遍历二叉树:\n");
		InOrderTraverse(T, visitT);
		printf("后序递归遍历二叉树:\n");
		PostOrderTraverse(T, visitT);
		scanf("%*c"); /* 吃掉回车符 */
		printf("按回车键继续:");
		getchar(); /* 暂停输出 */
		printf("层序遍历二叉树:\n");
		LevelOrderTraverse(T, visitT);
		printf("请输入一个结点的值: ");
#ifdef CHAR
		scanf("%c", &e1);
#endif
#ifdef INT
		scanf("%d", &e1);
#endif
		c = Point(T, e1); /* c为e1的指针 */
#ifdef CHAR
		printf("结点的值为%c\n", Value(c));
#endif
#ifdef INT
		printf("结点的值为%d\n", Value(c));
#endif
		printf("欲改变此结点的值,请输入新值: ");
#ifdef CHAR
		scanf("%*c%c%*c", &e2);
#endif
#ifdef INT
		scanf("%d", &e2);
#endif
		Assign(c, e2);
		printf("层序遍历二叉树:\n");
		LevelOrderTraverse(T, visitT);
		e1 = Parent(T, e2);
		if (e1 != Nil)
#ifdef CHAR
			printf("%c的双亲是%c\n", e2, e1);
#endif
#ifdef INT
		printf("%d的双亲是%d\n", e2, e1);
#endif
		else
#ifdef CHAR
			printf("%c没有双亲\n", e2);
#endif
#ifdef INT
		printf("%d没有双亲\n", e2);
#endif
		e1 = LeftChild(T, e2);
		if (e1 != Nil)
#ifdef CHAR
			printf("%c的左孩子是%c\n", e2, e1);
#endif
#ifdef INT
		printf("%d的左孩子是%d\n", e2, e1);
#endif
		else
#ifdef CHAR
			printf("%c没有左孩子\n", e2);
#endif
#ifdef INT
		printf("%d没有左孩子\n", e2);
#endif
		e1 = RightChild(T, e2);
		if (e1 != Nil)
#ifdef CHAR
			printf("%c的右孩子是%c\n", e2, e1);
#endif
#ifdef INT
		printf("%d的右孩子是%d\n", e2, e1);
#endif
		else
#ifdef CHAR
			printf("%c没有右孩子\n", e2);
#endif
#ifdef INT
		printf("%d没有右孩子\n", e2);
#endif
		e1 = LeftSibling(T, e2);
		if (e1 != Nil)
#ifdef CHAR
			printf("%c的左兄弟是%c\n", e2, e1);
#endif
#ifdef INT
		printf("%d的左兄弟是%d\n", e2, e1);
#endif
		else
#ifdef CHAR
			printf("%c没有左兄弟\n", e2);
#endif
#ifdef INT
		printf("%d没有左兄弟\n", e2);
#endif
		e1 = RightSibling(T, e2);
		if (e1 != Nil)
#ifdef CHAR
			printf("%c的右兄弟是%c\n", e2, e1);
#endif
#ifdef INT
		printf("%d的右兄弟是%d\n", e2, e1);
#endif
		else
#ifdef CHAR
			printf("%c没有右兄弟\n", e2);
#endif
#ifdef INT
		printf("%d没有右兄弟\n", e2);
#endif 
		InitBiTree(&c);
		printf("构造一个右子树为空的二叉树c:\n");
#ifdef CHAR
		printf("请先序输入二叉树(如:ab三个空格表示a为根结点,b为左子树的二叉树)\n");
#endif
#ifdef INT
		printf("请先序输入二叉树(如:1 2 0 0 0表示1为根结点,2为左子树的二叉树)\n");
#endif
		CreateBiTree(&c);
		printf("先序递归遍历二叉树c:\n");
		PreOrderTraverse(c, visitT);
		printf("树c插到树T中,请输入树T中树c的双亲结点 c为左(0)或右(1)子树: ");
#ifdef CHAR
		scanf("%*c%c%d", &e1, &i);
#endif
#ifdef INT
		scanf("%d%d", &e1, &i);
#endif
		q = Point(T, e1);
		InsertChild(q, i, c);
		printf("先序递归遍历二叉树:\n");
		PreOrderTraverse(T, visitT);
		printf("删除子树,请输入待删除子树的双亲结点  左(0)或右(1)子树: ");
#ifdef CHAR
		scanf("%*c%c%d", &e1, &i);
#endif
#ifdef INT
		scanf("%d%d", &e1, &i);
#endif
		q = Point(T, e1);
		DeleteChild(q, i);
		printf("先序递归遍历二叉树:\n");
		PreOrderTraverse(T, visitT);
		DestroyBiTree(&T);
	}

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值