Keras
Mr_不想起床
努力工作,环游世界!
展开
-
keras/tensorflow 使用flask部署服务的常见错误及部署多个模型
本文主要列举了在用keras/tensorflow训练好模型后,使用flask部署服务时的两个常见错误及一次性解决办法。类型1、ValueError: Tensor Tensor(“dense_1/Softmax:0”, shape=(?, 5), dtype=float32) is not an element of this graph.这个错误主要是报模型最后一层出现类似的错误,比如这里的最后一层是softmax,不同的模型最后一层可能不一样,但错误类型一致。类型2、W tensorflo原创 2020-05-11 17:41:38 · 2231 阅读 · 2 评论 -
最通俗的deepFM理解及keras实现
转自:https://blog.csdn.net/songbinxu/article/details/80151814一、数据格式 在设计模型之间,首先要明确数据的格式应该是怎样的。我们假设现在要解决的问题是一个CTR预估问题,数据集是 (X,y)(X,y),每一个样本都是高度稀疏的高维向量。假设我们有两种 field 的特征,连续型和离散型,连续型 field 一般不做...转载 2020-03-08 11:37:15 · 1882 阅读 · 0 评论 -
基于Adversarial Attack的问题等价性判别比赛baseline
比赛地址:https://biendata.com/competition/2019diac/详见github数据处理:# -*- coding: utf-8 -*-"""# @Time : 2019/11/28 17:46# @Author : xiaoxiong# @Email : xyf_0704@sina.com# @File : data_pr...原创 2019-12-03 19:18:11 · 645 阅读 · 0 评论 -
深度学习中Mask的基本原理
Mask的主要目的:排除在padding后对后续处理带来的影响!mask是伴随这padding出现的,因为神经网络的输入需要一个规整的张量,而文本通常都是不定长的,这样一来就需要裁剪或者填充的方式来使得它们变成定长,按照常规习惯,我们会使用0作为padding符号。这里用简单的向量来描述padding的原理。假设有一个长度为5的向量:x=[1,0,3,4,5]x=[1,0,3,4,5...转载 2019-10-15 17:26:24 · 5991 阅读 · 0 评论 -
keras模型训练与保存的call_back的设置
1、模型训练fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_e...原创 2019-09-07 14:07:33 · 2394 阅读 · 0 评论 -
BiLSTM-CRF中CRF层的作用
1、先验知识: 命名实体识别或序列标注,基本掌握LSTM、CRF的基本概念。也可参考:LSTMCRF2、基本概念与假设:假设我们的数据集中有两类实体——人名和地名,与之相对应在我们的训练数据集中,有五类标签:B-Person, I- Person,B-Organization,I-Organization, O 假设句子x由五个字符w1,w2,...原创 2019-04-17 16:22:16 · 5284 阅读 · 0 评论 -
Keras实现Seq2Seq预测模型
一个基于keras实现seq2seq(Encoder-Decoder)的序列预测例子序列预测问题描述:输入序列为随机产生的整数序列,目标序列是对输入序列前三个元素进行反转后的序列,当然这只是我们自己定义的一种形式,可以自定义更复杂的场景。输入序列 目标序列[13, 28, 18, 7, 9, 5] [18, 28, 13][29, 44, ...原创 2019-04-17 14:55:36 · 7121 阅读 · 20 评论 -
CRF(条件随机场)与Viterbi(维特比)算法原理详解
摘自:https://mp.weixin.qq.com/s/GXbFxlExDtjtQe-OPwfokA https://www.cnblogs.com/zhibei/p/9391014.htmlCRF(Conditional Random Field),即条件随机场。经常被用于序列标注,其中包括词性标注,分词,命名实体识别等领域。Viterbi算法,即维特比算法。...原创 2019-04-17 10:36:52 · 25909 阅读 · 6 评论 -
Keras实现带attention的seq2seq预测模型
目录带有注意力机制的编码器-解码器(Encoder-Decoder with Attention)一个测试注意力机制的问题(Test Problem for Attention)没有注意力机制的编码-解码(Encoder-Decoder Without Attention)自定义Keras中的Attention层(...转载 2019-04-16 16:44:41 · 6878 阅读 · 5 评论 -
Attention 机制详细介绍:原理、分类及应用
Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型的效果的的机制(Mechanism),一般称为Attention Mechanism。Attention Mechanism目前非常流行,广泛应用于机器翻译、语音识别、图像标注(Image Caption)等很多领域,之所以它这么受欢迎,是因为Attention给模型赋予了区分辨别的能力,例如,在...转载 2019-04-16 09:18:36 · 15555 阅读 · 0 评论 -
深度神经网络中concatenate()和add层的不同
深度神经网络中,经常会遇到需要把张量结合在一起的情况,比如Inception、DenseNet、Resnet等concatenate操作是网络结构设计中很重要的一种操作,经常用于将特征联合,多个卷积特征提取框架提取的特征融合或者是将输出层的信息进行融合,而add层更像是信息之间的叠加。Resnet是做值的叠加,通道数是不变的,DenseNet是做通道的合并。你可以这么理解,add是描述图像...原创 2019-04-11 20:22:36 · 4510 阅读 · 3 评论