交通预测
Mr_不想起床
努力工作,环游世界!
展开
-
STSGCN:时空同步图卷积神经网络用于交通预测
文章信息《Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting》。由北京交通大学计算机学院万怀宇和林友芳老师团队的硕士生宋超和博士生郭晟楠完成,已被AAAI 2020接收。摘要本文提出了一种基于图卷积方法的时空网络预测方法,该方法以路网结构为基础,将多个近邻时间步的空间图连接到一起,使用图卷积方法捕获复杂的转载 2020-11-09 15:05:00 · 4736 阅读 · 3 评论 -
智能交通流量预测方案收集(持续更新)
交通流量预测应用方案收集(欢迎补充、持续更新…)论文合集基于时间图卷积网络(T-GCN)交通流预测(A Temporal Graph Convolutional Network for Traffic Prediction) 2019IEEE一种基于神经网络的交通预测方法,该模型结合了图卷积网络(GCN)和门控递归单元(GRU)。GCN用于学习复杂的拓扑结构来捕获空间依赖关系,GRU用于学习交通数据的动态变化来捕获时间依赖关系。论文下载链接实现链接tf基于注意力机制的时空图卷积网络原创 2020-11-09 14:26:26 · 3517 阅读 · 3 评论 -
交通预测-T-GCN-时间图卷积网络代码及原理
实现代码github最通俗易懂的图神经网络(GCN)原理详解1、文章信息《T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction》2、摘要为了同时捕获空间和时间依赖关系,提出了一个新的神经网络方法,时间图卷积网络模型 (T-GCN),将图卷积和门控循环单元融合起来。GCN 用来学习复杂的拓扑结构...原创 2019-12-05 17:03:59 · 14899 阅读 · 16 评论 -
基于时空信息的交通流量预测方法汇总
主要收集了基于时空(欧式与非欧空间)交通流量预测最新方法部分论文下载交通流量预测算法调研 算法名称 算法基本原理 考虑维度 应用场景 是否有开源实现 链接 实验数据集 期刊 基于时间图卷积网络(T-GCN)交通流预测(A Temporal Graph Convolutional Network for Traffic Prediction ...原创 2019-12-07 17:41:55 · 5716 阅读 · 2 评论