最近刷codeup时,逐步感到题目难度的提升因此在后续阶段,会逐步更新一些codeup中有一些难度的题目.
思路:
看到题目后,就首先想到了数据结构时,所学习到的中缀以及后缀表达式。实现思路如下:
1、首先将中缀表达式转换成后缀表达式,这里我们需要借助队列与栈。对中缀表达式进行处理,对于数字直接将其push到队列中;对于符号,判断当前符号与符号栈栈顶符号的优先级关系,如果当前符号的优先级小于栈顶符号,栈顶符号出栈进入队列,并继续比较。否则将当前符号入栈。
2、得到后缀表达式后,对后缀表达式进行计算,依次从队列中pop。同时需要使用一个栈存放结果。对于队列中提取出的字符,分为两种情况,数字直接入栈,操作符需要从栈顶依次POP出两个数进行操作符对应计算后,将结果重新入栈。最后栈中仅剩的一个数字就是我们的计算结果。
#include<iostream>
#include<string>
#include<queue>
#include<stack>
#include<map>
using namespace std;
struct node{
double num;
char op;
bool flag;
};
queue<node> q;
stack<node> s;
string str;
map<char, int> mp;
void change(){
double num;
node temp;
for (int i = 0; i < str.length();) {
if (str[i] >= '0'&&str[i] <= '9') {
temp.flag = true;
temp.num = str[i++] - '0';
while (i < str.length() && str[i] >= '0'&&str[i] <= '9') {
temp.num = temp.num * 10 + (str[i] - '0');
i++;
}
q.push(temp);
}else{
temp.flag = false;
while(!s.empty() && mp[str[i]]<=mp[s.top().op]){
q.push(s.top());
s.pop();
}
temp.op = str[i];
s.push(temp);
i++;
}
}
while(!s.empty()){
q.push(s.top());
s.pop();
}
}
double Cal(){
double temp1, temp2;
node cur, temp;
while(!q.empty()){
cur = q.front();
q.pop();
if(cur.flag) s.push(cur);
else{
temp2 = s.top().num;
s.pop();
temp1 = s.top().num;
s.pop();
temp.flag = true;
if (cur.op == '+') temp.num = temp1 + temp2;
else if (cur.op == '-') temp.num = temp1 - temp2;
else if (cur.op == '*') temp.num = temp1 * temp2;
else temp.num = temp1 / temp2;
s.push(temp);
}
}
return s.top().num;
}
int main(){
mp['+'] = mp['-'] = 1;
mp['*'] = mp['/'] = 2;
while(getline(cin, str)&&str!="0"){
for(int i=0; i<str.length(); i++){
if(str[i] == ' '){
str.erase(i,1);
}
}
while(!s.empty()) s.pop();
change();
node t;
/*
while(!q.empty()){
t= q.front();
if(t.flag){
printf("%.0f ", t.num);
}else{
printf("%c", t.op);
}
q.pop();
}*/
printf("%.2f\n", Cal());
}
return 0;
}