1,Kronecker积的定义和性质
1.1,Kronecker积的概念
设
,称如下的分块矩阵:
为
与
的
积或直积。
(1)对于矩阵
和
,一般有
,即矩阵的
积不满足交换律。
(2)任意矩阵与零矩阵的
积等于零矩阵,即
(3)
阶单位矩阵与
阶单位矩阵的
积为
阶单位矩阵,即:
。
【例1】设
,则:
1.2,Kronecker积的性质
性质1:设
为常数,则
性质2:设
与
为同解矩阵,则:
性质3:
性质4:矩阵的
积满足结合律,即
性质5:设
,则
性质6:
积的逆矩阵和广义逆满足
,
性质7: 设
都是酉矩阵,则
也是酉矩阵。
设
的全体特征值为
,
的全体特征值为
,那么:
(1)
的全体特征值为
(2)
的特征值为
设
的全体特征值为
,
的全体特征值为
,则
可逆的充要条件是
积的秩:
积的行列式:
积的迹:
积的范数:
设
是
的特征向量,
是
的特征向量,
是
的特征向量。
设
,则
,
设
,证明
2,Kronecker积的应用
2.1,矩阵的拉直
设
,称
维列向量:
,为矩阵
的按行拉直。
【例2】若
,则
性质:
(1)设
,则
。
(2)设
,则
。
(3)设
,则
推论:设
,则:
(1)
(2)
2.2,线性方程的可解性
设
,解
矩阵方程:
。将方程两端拉直,并利用拉直和矩阵的
积的关系可得:
因为矩阵方程与线性方程等价,根据线性方程组有解的判别条件:矩阵方程有解的充分必要条件是:
,矩阵方程有唯一解的充分必要条件是:
,即
与
无反号的特征值。
【例3】解矩阵方程
,其中
的特征值为
,
;
的特征值为
,
。
与
无互为反号的特征值,故矩阵方程有唯一解。
设
,将矩阵方程组转换为线性方程组:
形式
可求得
,于是矩阵方程的唯一解为:
【例4】解矩阵方程
,其中
的特征值为
;
的特征值为
。
可知
。
设
,将矩阵方程转化为线性方程组的形式。
该方程组有解,其通解为
于是矩阵方程的通解为:
设
,解一般的线性矩阵方程:
将矩阵方程两端拉直,并利用拉直和矩阵的
积的关系可得:
因为矩阵方程与线性方程等价,根据线性方程组有解的判别条件可得矩阵方程有解的充分必要条件是:
【例5】求解矩阵方程
,其中
将矩阵方程转化为线性方程组的形式
该方程组的唯一解为
于是矩阵方程的唯一解为:
设
,求解矩阵微分方程的初值问题:
并利用拉直和矩阵的
积的关系可得:
这是常系数线性微分方程组的初值问题,其结果为:
所以矩阵微分方程初值问题的解为:
【例6】求解矩阵微分方程的初值问题,其中
可求得
进一步
3,Hadamard积
3.1,Hadamard积的定义与性质
设
,
和
的
积
(舒尔积)定义为:
(1)只要两个矩阵同型即可做
积。
(2)
积在很多领域都有应用:周期函数卷积的三角矩、特征函数(概率论)、组合论等。
利用
积的性质:
(1)
(2)
,
(3)
(4)若
和
都是对称矩阵,则
也是对称矩阵;若
和
都是反对称矩阵,则
是对称矩阵;若
是对称矩阵,
是反对称矩阵,则
是反对称矩阵。
(5)设
,又设
是
阶对角矩阵而
是
阶对角矩阵,则
(6)设
,又记
,则
,其中左边是矩阵的第
个对角线元素,右边是向量的第
个分量。
(7)设
,则三重混合积
与
对应的对角元素相同,即
。
3.2,Hadamard积的几个重要定理
设
,则
。
设
和
均为
阶
(半)正定矩阵,则
为
(半)正定矩阵。
设
为
阶
正定矩阵,而
为
阶
半正定矩阵且
,则
为
正定矩阵。
为半正定矩阵
对所有的半正定矩阵
有
。