矩阵分析:Kronecker积,Hadamard积

1,Kronecker积的定义和性质

1.1,Kronecker积的概念

设 \small A=(a_{ij})_{m\times n},B=(b_{ij})_{p\times q},称如下的分块矩阵:

\small A\otimes B=\begin{bmatrix} a_{11}B &a_{12}B & ...& a_{1n}B \\ a_{21}B &a_{22}B & ...& a_{2n}B \\ ... &... & ...& ...\\ a_{m1}B &a_{m2}B & ...& a_{mn}B \end{bmatrix}

为 \small A 与 \small B 的 \small Kronecker 积或直积。

(1)对于矩阵 \small A_{m\times n} 和 \small B_{p\times q},一般有 \small A\otimes B\ne B\otimes A,即矩阵的 \small Kronecker 积不满足交换律。

(2)任意矩阵与零矩阵的\small Kronecker 积等于零矩阵,即 \small A\otimes 0=0\otimes A=0

(3)\small m 阶单位矩阵与 \small n 阶单位矩阵的 \small Kronecker 积为 \small mn 阶单位矩阵,即:\small I_m\otimes I_n=I_{m\times n} 

【例1】设 \small A=\begin{bmatrix} 1 &2 \\ 3 & 4 \end{bmatrix},B=\begin{bmatrix} 2 &-1 \end{bmatrix},则:

\small A\otimes B=\begin{bmatrix} B &2B \\ 3B &4B \end{bmatrix}=\begin{bmatrix} 2 &-1 &4 &-2 \\ 6& -3&8 & -4 \end{bmatrix}

\small B\otimes A=\begin{bmatrix} 2A &-A \end{bmatrix}=\begin{bmatrix} 2 & 4 & -1 &-2 \\ 6& 8& -3 & -4 \end{bmatrix}

1.2,Kronecker积的性质

性质1:设 \small k,l 为常数,则 \small (kA)\otimes (lB)=kl(A\otimes B)

性质2:设 \small A_1 与 \small A_2 为同解矩阵,则:\small (A_1+A_2)\otimes B=A_1\otimes B+A_2\otimes B

性质3:\small (A\otimes B)^T=A^T\otimes B^T,(A\otimes B)^H=A^H\otimes B^H

性质4:矩阵的 \small Kronecker 积满足结合律,即 \small (A\otimes B)\otimes C=A\otimes(B \otimes C)

性质5:设 \small A=(a_{ij})_{m\times n},B=(b_{ij})_{p\times q},C=(c_{ij})_{n\times s},D=(d_{ij})_{q\times t},则 \small (A\otimes B)(C\otimes D)=(AC)\otimes (BD)

性质6:\small Kronecker 积的逆矩阵和广义逆满足 \small (A\otimes B)^{-1}=A^{-1}\otimes B^{-1}\small (A \otimes B)^+=A^+\otimes B^+

性质7: \small A\in \mathbb{C}^{m\times m},B\in \mathbb{C}^{n\times n} 都是酉矩阵,则 \small A \otimes B 也是酉矩阵。 

设 \small A\in \mathbb{C}^{m\times m} 的全体特征值为 \small \lambda_1,\lambda_2,...,\lambda_m\small B\in \mathbb{C}^{n\times n} 的全体特征值为 \small \mu_1,\mu_2,...,\mu_n,那么:

(1)\small A\otimes B 的全体特征值为 \small \lambda_i\mu_j(i=1,...,m;j=1,...,n)

(2)\small A\otimes I_n+I_m\otimes B^T 的特征值为 \small \lambda_i+\mu_j(i=1,2,...,m;j=1,2,...,n)

设 \small A\in \mathbb{C}^{m\times m} 的全体特征值为 \small \lambda_1,\lambda_2,...,\lambda_m\small B\in \mathbb{C}^{n\times n} 的全体特征值为 \small \mu_1,\mu_2,...,\mu_n,则 \small A\otimes I_n+I_m\otimes B^T 可逆的充要条件是 \small \lambda_i+\mu_j\ne 0(i=1,2,...,m;j=1,2,...,n)

\small Kronecker 积的秩:\small rank(A\otimes B)=rank(A)rank(B)

\small Kronecker 积的行列式:\small det(A_{m\times n}\otimes B_{n\times n})=(detA)^n(detB)^m

\small Kronecker 积的迹:\small tr(A\otimes B)=tr(A)tr(B)

\small Kronecker 积的范数:\small \left\{\begin{matrix} ||A\otimes B||_1=||A||_1||B||_1\\ ||A\otimes B||_2=||A||_2||B||_2\\ ||A\otimes B||_\infty =||A||_\infty ||B||_\infty \end{matrix}\right.

设 \small x 是 \small A\in \mathbb{C}^{m\times m}的特征向量,\small y 是 \small B\in\mathbb{C}^{n\times n} 的特征向量,\small x\otimes y 是 \small A\otimes B 的特征向量。

设 \small A\in \mathbb{C}^{n\times n},则 \small e^{I\otimes A}=I\otimes e^A\small e^{A\otimes I}=e^A\otimes I

设 \small A\in \mathbb{C}^{m\times m},B\in \mathbb{C}^{n\times n},证明 \small e^{A\otimes I_n+I_m\otimes B}=e^A\otimes e^B

2,Kronecker积的应用

2.1,矩阵的拉直

设 \small A=(a_{ij})_{m\times n},称 \small mn 维列向量:\small \overline{A}=(a_{11},a_{12},...,a_{1n},a_{21},a_{22},...,a_{2n},...,a_{m1},a_{m2},...,a_{mm}),为矩阵 \small A 的按行拉直。

【例2】若 \small A=\begin{bmatrix} 1 &2 &3 \\ 4 & 5 & 6 \end{bmatrix},则 \small \overline{A}=(1,2,3,4,5,6)^T

性质:

(1)设 \small A,B\in \mathbb{C}^{m\times n}\, \, k,l\in \mathbb{R},则 \small \overrightarrow{(kA+lB)}=k\overrightarrow{A}+l\overrightarrow{B} 。

(2)设 \small A(t)=(a_{ij}(t))_{m\times n},则 \small \frac{\overrightarrow{dA(t)}}{dt}=\frac{d\overrightarrow{A}}{dt} 。

(3)设 \small A\in \mathbb{C}^{m\times n},X\in \mathbb{C}^{n\times p},B\in \mathbb{C}^{p\times q},则 \small \overrightarrow{AXB}=(A\otimes B)\overrightarrow{X}

推论:设 \small A\in \mathbb{C}^{m\times m},X\in \mathbb{C}^{m\times n},B\in \mathbb{C}^{n\times n},则:

(1)\small \overrightarrow{AX}=(A\otimes I_n)\overrightarrow{X},\overrightarrow{XB}=(I_m\otimes B^T)\overrightarrow{X}

(2)\small \overrightarrow{AX+XB}=(A\otimes I_n+I_m\otimes B^T)\overrightarrow{X}

2.2,线性方程的可解性

设 \small A\in \mathbb{C}^{m\times m},B\in \mathbb{C}^{n\times n},F\in \mathbb{C}^{m\times n},解 \small Lyapunov 矩阵方程:\small AX+XB=F。将方程两端拉直,并利用拉直和矩阵的 \small Kronecker 积的关系可得:

\small (A\otimes I_n+I_m\otimes B^T)\overrightarrow{X}=\overrightarrow{F}

因为矩阵方程与线性方程等价,根据线性方程组有解的判别条件:矩阵方程有解的充分必要条件是:\small rank(A\otimes I_n+I_m\otimes B^T:\overrightarrow{F})=rank(A\otimes I_n+I_m\otimes B^T),矩阵方程有唯一解的充分必要条件是:\small det(A\otimes I_n+I_m\otimes B^T)\ne 0,即 \small A 与 \small B 无反号的特征值。

【例3】解矩阵方程 \small AX+XB=F,其中

\small A=\begin{bmatrix} 1 &-1 \\ 0& 2 \end{bmatrix},B=\begin{bmatrix} -3 &4 \\ 1& 0 \end{bmatrix},F=\begin{bmatrix} 1 &3 \\ -2& 2 \end{bmatrix}

\small A 的特征值为 \small \lambda_1=1\small \lambda_2=2\small B 的特征值为 \small \mu_1=1\small \mu_2=-4 。

\small A 与 \small B 无互为反号的特征值,故矩阵方程有唯一解。

设 \small X=\begin{bmatrix} x_1 & x_2\\ x_3& x_4 \end{bmatrix},将矩阵方程组转换为线性方程组:\small (A\otimes I_n+I_m\otimes B^T)\overrightarrow{X}=\overrightarrow{F} 形式

\small \begin{bmatrix} -2 & 1 &-1 &0 \\ 4& 1& 0& -1\\ 0& 0 & -1 &1 \\ 0& 0& 4& 2 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}=\begin{bmatrix} 1\\ 3\\ -2\\ 2 \end{bmatrix}

可求得 \small x_1=0,x_2=2,x_3=1,x_4=-1,于是矩阵方程的唯一解为:

\small X=\begin{bmatrix} 0 &2 \\ 1 & -1 \end{bmatrix}

【例4】解矩阵方程 \small AX+XB=F,其中

\small \small A=\begin{bmatrix} 1 &-1 \\ 0& 2 \end{bmatrix},B=\begin{bmatrix} -3 &4 \\ 0& -1 \end{bmatrix},F=\begin{bmatrix} 0 &5 \\2& -9 \end{bmatrix}

\small A 的特征值为 \small \lambda_1=1,\lambda_2=2\small B 的特征值为 \small \mu_1=-1,\mu_2=-3

可知 \small \lambda_1+\mu_1=0

设 \small X=\begin{bmatrix} x_1 &x_2 \\ x_3 & x_4 \end{bmatrix},将矩阵方程转化为线性方程组的形式。

\small \begin{bmatrix} -2 & 0 &-1 &0 \\ 4&0& 0& -1\\ 0& 0 & -1 &0 \\ 0& 0& 4& 1\end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}=\begin{bmatrix} 0\\ 5\\ -2\\ 9 \end{bmatrix}

该方程组有解,其通解为 \small x_1=1,x_2=c,x_3=-2,x_4=-1

于是矩阵方程的通解为:\small X=\begin{bmatrix} 1 &0 \\ -2& -1 \end{bmatrix}+c\begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix},\forall c\in \mathbb{C}

设 \small A_k\in \mathbb{C}^{m\times n},B_k\in \mathbb{C}^{p\times q},F\in \mathbb{C}^{m\times q},解一般的线性矩阵方程:

\small \sum_{k=1}^rA_kXB_k=F(r=1,2,...)

将矩阵方程两端拉直,并利用拉直和矩阵的 \small Kronecker 积的关系可得:

\small \left ( \sum_{k=1}^r(A_k\otimes B_k^T) \right )\overrightarrow{X}=\overrightarrow{F}

因为矩阵方程与线性方程等价,根据线性方程组有解的判别条件可得矩阵方程有解的充分必要条件是:

\small rank\left ( \sum_{k=1}^r(A_k\otimes B_k^T):\overrightarrow{F} \right )=rank\left ( \sum_{k=1}^r(A_k\otimes B_k^T) \right )

【例5】求解矩阵方程 \small A_1XB_1+A_2XB_2=F,其中

\small A_1=\begin{bmatrix} 2 &2 \\ 2 & -1 \end{bmatrix},A_2=\begin{bmatrix} 0 &1 \\ -2 & -1 \end{bmatrix},B_1=\begin{bmatrix} 1 &0 \\ -1 & 1 \end{bmatrix}

\small B_2=\begin{bmatrix} 0 &2 \\ -1 & 3\end{bmatrix},F=\begin{bmatrix} 4&-6 \\ 3 & 6 \end{bmatrix},X=\begin{bmatrix} x_1 &x_2 \\ x_3 & x_4 \end{bmatrix}

将矩阵方程转化为线性方程组的形式

\small \begin{bmatrix} 2 & -2 & 2 &-3 \\ 0&2 &2 & 5\\ 2 &0 & -1 &2 \\ -4& -4& -2& -4 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}=\begin{bmatrix} 4\\ -6\\ 3\\ 6 \end{bmatrix}

该方程组的唯一解为 \small x_1=1,x_2=-2,x_3=-1,x_4=0 于是矩阵方程的唯一解为:

\small X=\begin{bmatrix} 1 &-2 \\ -1 &0 \end{bmatrix}

设 \small A\in \mathbb{C}^{m\times m},B\in \mathbb{C}^{n\times n},X(t)\in \mathbb{C}^{m\times n},求解矩阵微分方程的初值问题:

\small \left\{\begin{matrix} \frac{dX(t)}{dt}=AX(t)+X(t)B\\ X(0)=X_0 \end{matrix}\right.

并利用拉直和矩阵的 \small Kronecker 积的关系可得:

\small \left\{\begin{matrix} \frac{d\overrightarrow{X(t)}}{dt}=\left ( A\otimes I_n+I_m\otimes B^T \right )\overrightarrow{X(t)}\\ \overrightarrow{X(0)}=\overrightarrow{X_0} \end{matrix}\right.

这是常系数线性微分方程组的初值问题,其结果为:

\small \overrightarrow{X(t)}=e^{(A\otimes I_n+I_m\otimes B^T)t}\overrightarrow{X_0}=e^{At}\otimes e^{B^Tt}\overrightarrow{X_0}

\small =\overrightarrow{e^{At}X_0(e^{B^Tt})^T}=\overrightarrow{e^{At}X_0e^{Bt}}

所以矩阵微分方程初值问题的解为:

\small X(t)=e^{At}X_0e^{Bt}

【例6】求解矩阵微分方程的初值问题,其中

\small A=\begin{bmatrix} 1 &-1 \\ 0& 2 \end{bmatrix},B=\begin{bmatrix} 1 &0 \\ 0& -1 \end{bmatrix},X_0=\begin{bmatrix} -2 &0 \\ 1 & 1 \end{bmatrix}

可求得

\small e^{At}=\begin{bmatrix} e^t &e^t-e^{2t} \\ 0 & e^{2t} \end{bmatrix},e^{Bt}=\begin{bmatrix} e^t &0 \\ 0 & e^{-t} \end{bmatrix}

进一步 \small X(t)=e^{At}X_0e^{Bt}=\begin{bmatrix} -e^{2t}-e^{3t} &1-2e^t \\ e^{3t} & e^t \end{bmatrix}

3,Hadamard积

3.1,Hadamard积的定义与性质

设 \small A=(a_{ij})_{m\times n},B=(b_{ij})_{m\times n}\in \mathbb{C}^{m\times n}\small A 和 \small B 的 \small Hadamard 积 \small A\circ B (舒尔积)定义为:

\small A\circ B=\begin{bmatrix} a_{11} b_{11}&a_{12} b_{12} & ...&a_{1n} b_{1n}\\ a_{21} b_{21} & a_{22} b_{22} &... &a_{2n} b_{2n} \\ ... &... & ... & ...\\ a_{m1}b_{m1} &a_{m2}b_{m2} &... & a_{mn}b_{mn} \end{bmatrix}

(1)只要两个矩阵同型即可做 \small Hadamard 积。

(2)\small Hadamard 积在很多领域都有应用:周期函数卷积的三角矩、特征函数(概率论)、组合论等。

利用 \small Hadamard 积的性质:

(1)\small A\circ B=A\circ B,k(A\circ B)=(kA)\circ B=A\circ (kB)

(2)\small A\circ (B+C)=A\circ B+A\circ C\small A\circ (B\circ C)=(A\circ B)\circ C

(3)\small (A\circ B)^T=A^T\circ B^T,(A\circ B)^H=A^H\circ B^H

(4)若 \small A 和 \small B 都是对称矩阵,则 \small A\circ B 也是对称矩阵;若 \small A 和 \small B 都是反对称矩阵,则 \small A\circ B 是对称矩阵;若 \small A 是对称矩阵,\small B 是反对称矩阵,则 \small A\circ B 是反对称矩阵。

(5)设 \small A,B\in \mathbb{C}^{m\times n},又设 \small D 是 \small m 阶对角矩阵而 \small E 是 \small n 阶对角矩阵,则 \small D(A\circ B)E=(DAE)\circ B=(DA)\circ (BE)=(AE)\circ (DB)=A\circ (DBE)

(6)设\small A,B\in \mathbb{C}^{m\times n},又记 \small X=diag(x_1,x_2,...,x_n),x=(x_1,x_2,...,x_n)^T,则 \small (AXB^T)_{ii}=((A\circ B)x_i)_i(i=1,2,...,m),其中左边是矩阵的第 \small i 个对角线元素,右边是向量的第 \small i 个分量。

(7)设 \small A,B,C\in \mathbb{C}^{m\times n},则三重混合积 \small (A\circ B)C^T 与 \small (A\circ C)B^T 对应的对角元素相同,即 \small ((A\circ B)C^T)_{ii}=((A\circ C)B^T)_{ii}(i=1,2,...,m)

3.2,Hadamard积的几个重要定理

设 \small A,B\in \mathbb{C}^{m\times n},则 \small rank(A\circ B)\leqslant (rankA)(rankB)

设 \small A 和 \small B 均为 \small n 阶 \small Hermite (半)正定矩阵,则 \small A\circ B 为 \small Hermite (半)正定矩阵。

设 \small A 为 \small n 阶 \small Hermite 正定矩阵,而 \small B=(b_{ij}) 为 \small n 阶 \small Hermite 半正定矩阵且 \small b_{ii}>0(i=1,2,...,n),则 \small A\circ B 为 \small Hermite 正定矩阵。

\small A=(a_{ij})_{n\times n}\in \mathbb{R}^{n\times n} 为半正定矩阵 \small \Leftrightarrow 对所有的半正定矩阵 \small B=(b_{ij})_{n\times n} 有 \small \sum_{i=1}^n\sum_{j=1}^na_{ij}b_{ij}\geqslant 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

燕双嘤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值