Kronecker积(又称张量积或直积)是一种将两个矩阵组合成更大矩阵的运算,广泛应用于线性代数、量子力学和信号处理等领域,其通过众多性质,为处理多维数据和复杂线性系统提供了强大的工具。
作者在阅读多卫星多频点GNSS定位模型的论文时,发现论文公式中存在Kronecker积,且相关推导用到了Kronecker积的性质,但本人对该运算不太熟悉,所以在询问deepseek和查阅文献后,总结了Kronecker积的定义与常见性质,写下来作为笔记,方便日后查看。
若存在错误,欢迎在评论区指出。
以下是Kronecker积的定义及常见性质:
定义
给定矩阵
A
∈
C
m
×
n
A \in \mathbb{C}^{m \times n}
A∈Cm×n 和
B
∈
C
p
×
q
B \in \mathbb{C}^{p \times q}
B∈Cp×q,它们的Kronecker积
A
⊗
B
A \otimes B
A⊗B 是一个分块矩阵,大小为
(
m
p
)
×
(
n
q
)
(mp) \times (nq)
(mp)×(nq),其元素定义为:
(
A
⊗
B
)
(
i
−
1
)
p
+
k
,
(
j
−
1
)
q
+
l
=
A
i
,
j
⋅
B
k
,
l
,
(A \otimes B)_{(i-1)p+k, (j-1)q+l} = A_{i,j} \cdot B_{k,l},
(A⊗B)(i−1)p+k,(j−1)q+l=Ai,j⋅Bk,l,
其中
1
≤
i
≤
m
1 \leq i \leq m
1≤i≤m,
1
≤
j
≤
n
1 \leq j \leq n
1≤j≤n,
1
≤
k
≤
p
1 \leq k \leq p
1≤k≤p,
1
≤
l
≤
q
1 \leq l \leq q
1≤l≤q。
写作容易理解的形式便是:
A
⊗
B
=
(
a
11
B
a
12
B
⋯
a
1
n
B
a
21
B
a
22
B
⋯
a
2
n
B
⋮
⋮
⋱
⋮
a
m
1
B
a
m
2
B
⋯
a
m
n
B
)
∈
R
(
m
p
)
×
(
n
q
)
A \otimes B=\begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B\\ a_{21}B & a_{22}B & \cdots & a_{2n}B\\ \vdots & \vdots & \ddots & \vdots\\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix} \in \mathbb{R}^{(mp)\times(nq)}
A⊗B=
a11Ba21B⋮am1Ba12Ba22B⋮am2B⋯⋯⋱⋯a1nBa2nB⋮amnB
∈R(mp)×(nq)
性质
-
结合律
( A ⊗ B ) ⊗ C = A ⊗ ( B ⊗ C ) . (A \otimes B) \otimes C = A \otimes (B \otimes C). (A⊗B)⊗C=A⊗(B⊗C). -
分配律
A ⊗ ( B + C ) = A ⊗ B + A ⊗ C (若 B , C 同维) , A \otimes (B + C) = A \otimes B + A \otimes C \quad \text{(若 $B, C$ 同维)}, A⊗(B+C)=A⊗B+A⊗C(若 B,C 同维),
( A + B ) ⊗ C = A ⊗ C + B ⊗ C (若 A , B 同维) . (A + B) \otimes C = A \otimes C + B \otimes C \quad \text{(若 $A, B$ 同维)}. (A+B)⊗C=A⊗C+B⊗C(若 A,B 同维). -
混合乘积性质
若矩阵乘法 A C AC AC 和 B D BD BD 满足矩阵乘法,则:
( A ⊗ B ) ( C ⊗ D ) = ( A C ) ⊗ ( B D ) . (A \otimes B)(C \otimes D) = (AC) \otimes (BD). (A⊗B)(C⊗D)=(AC)⊗(BD). -
转置
( A ⊗ B ) T = A T ⊗ B T . (A \otimes B)^T = A^T \otimes B^T. (A⊗B)T=AT⊗BT. -
逆矩阵
若 A A A 和 B B B 可逆,则:
( A ⊗ B ) − 1 = A − 1 ⊗ B − 1 . (A \otimes B)^{-1} = A^{-1} \otimes B^{-1}. (A⊗B)−1=A−1⊗B−1. -
迹(Trace)
若 A A A 和 B B B 为方阵,则:
t r ( A ⊗ B ) = t r ( A ) ⋅ t r ( B ) . \mathrm{tr}(A \otimes B) = \mathrm{tr}(A) \cdot \mathrm{tr}(B). tr(A⊗B)=tr(A)⋅tr(B).
注:矩阵的迹为矩阵对角线元素求和 -
行列式
若 A A A 为 n × n n \times n n×n 方阵, B B B 为 m × m m \times m m×m 方阵,则:
det ( A ⊗ B ) = det ( A ) m ⋅ det ( B ) n . \det(A \otimes B) = \det(A)^m \cdot \det(B)^n. det(A⊗B)=det(A)m⋅det(B)n. -
秩
r a n k ( A ⊗ B ) = r a n k ( A ) ⋅ r a n k ( B ) . \mathrm{rank}(A \otimes B) = \mathrm{rank}(A) \cdot \mathrm{rank}(B). rank(A⊗B)=rank(A)⋅rank(B). -
单位矩阵
I m ⊗ I n = I m n . I_m \otimes I_n = I_{mn}. Im⊗In=Imn. -
向量化公式
对任意矩阵 X X X,有:
v e c ( A X B ) = ( B T ⊗ A ) v e c ( X ) . \mathrm{vec}(AXB) = (B^T \otimes A) \mathrm{vec}(X). vec(AXB)=(BT⊗A)vec(X). -
p-范数
对于 p p p-范数(如 p = 1 , 2 , ∞ p=1, 2, \infty p=1,2,∞),Kronecker积满足:
∥ A ⊗ B ∥ p = ∥ A ∥ p ⋅ ∥ B ∥ p . \|A \otimes B\|_p = \|A\|_p \cdot \|B\|_p. ∥A⊗B∥p=∥A∥p⋅∥B∥p.
当 p = 2 p=2 p=2时对应的是矩阵的Frobenius范数
∥ A ⊗ B ∥ F = ∥ A ∥ F ⋅ ∥ B ∥ F . \|A \otimes B\|_F = \|A\|_F \cdot \|B\|_F. ∥A⊗B∥F=∥A∥F⋅∥B∥F.
其中矩阵 A A A的 p p p-范数为:
∥ A ∥ p = ∑ i , j ∣ A i , j ∣ p 1 / p . \|A\|_p = \sqrt[1/p]{\sum_{i,j} |A_{i,j}|^p}. ∥A∥p=1/pi,j∑∣Ai,j∣p. -
特征值
若 A A A 和 B B B 为方阵,特征值分别为 λ i \lambda_i λi 和 μ j \mu_j μj,则 A ⊗ B A \otimes B A⊗B 的特征值为 λ i μ j \lambda_i \mu_j λiμj,对应的特征向量为 v i ⊗ w j v_i \otimes w_j vi⊗wj。 -
谱范数(2-范数)
∥ A ⊗ B ∥ 2 = ∥ A ∥ 2 ⋅ ∥ B ∥ 2 . \|A \otimes B\|_2 = \|A\|_2 \cdot \|B\|_2. ∥A⊗B∥2=∥A∥2⋅∥B∥2.
其中矩阵 ( A ) 的谱范数为最大奇异值,即:
∥ A ∥ 2 = σ max ( A ) . \|A\|_2 = \sigma_{\max}(A). ∥A∥2=σmax(A). -
幂运算
若 A A A 和 B B B 为方阵,则:
( A ⊗ B ) k = A k ⊗ B k . (A \otimes B)^k = A^k \otimes B^k. (A⊗B)k=Ak⊗Bk.
- 标量乘法
对任意标量 c c c,有:
c ( A ⊗ B ) = ( c A ) ⊗ B = A ⊗ ( c B ) . c(A \otimes B) = (cA) \otimes B = A \otimes (cB). c(A⊗B)=(cA)⊗B=A⊗(cB).
应用示例
- 矩阵方程:方程
A
X
+
X
B
=
C
AX + XB = C
AX+XB=C 可转化为:
( I ⊗ A + B T ⊗ I ) v e c ( X ) = v e c ( C ) . (I \otimes A + B^T \otimes I)\mathrm{vec}(X) = \mathrm{vec}(C). (I⊗A+BT⊗I)vec(X)=vec(C).
其中 I I I的维度与 X X X的列数一致 - 量子力学:复合系统的状态空间为各子系统空间的Kronecker积。