克罗内克积kronecker的定义与常见性质

Kronecker积(又称张量积或直积)是一种将两个矩阵组合成更大矩阵的运算,广泛应用于线性代数、量子力学和信号处理等领域,其通过众多性质,为处理多维数据和复杂线性系统提供了强大的工具。

作者在阅读多卫星多频点GNSS定位模型的论文时,发现论文公式中存在Kronecker积,且相关推导用到了Kronecker积的性质,但本人对该运算不太熟悉,所以在询问deepseek和查阅文献后,总结了Kronecker积的定义与常见性质,写下来作为笔记,方便日后查看。

若存在错误,欢迎在评论区指出。

以下是Kronecker积的定义及常见性质:

定义

给定矩阵 A ∈ C m × n A \in \mathbb{C}^{m \times n} ACm×n B ∈ C p × q B \in \mathbb{C}^{p \times q} BCp×q,它们的Kronecker积 A ⊗ B A \otimes B AB 是一个分块矩阵,大小为 ( m p ) × ( n q ) (mp) \times (nq) (mp)×(nq),其元素定义为:
( A ⊗ B ) ( i − 1 ) p + k , ( j − 1 ) q + l = A i , j ⋅ B k , l , (A \otimes B)_{(i-1)p+k, (j-1)q+l} = A_{i,j} \cdot B_{k,l}, (AB)(i1)p+k,(j1)q+l=Ai,jBk,l,
其中 1 ≤ i ≤ m 1 \leq i \leq m 1im, 1 ≤ j ≤ n 1 \leq j \leq n 1jn, 1 ≤ k ≤ p 1 \leq k \leq p 1kp, 1 ≤ l ≤ q 1 \leq l \leq q 1lq

写作容易理解的形式便是:
A ⊗ B = ( a 11 B a 12 B ⋯ a 1 n B a 21 B a 22 B ⋯ a 2 n B ⋮ ⋮ ⋱ ⋮ a m 1 B a m 2 B ⋯ a m n B ) ∈ R ( m p ) × ( n q ) A \otimes B=\begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B\\ a_{21}B & a_{22}B & \cdots & a_{2n}B\\ \vdots & \vdots & \ddots & \vdots\\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix} \in \mathbb{R}^{(mp)\times(nq)} AB= a11Ba21Bam1Ba12Ba22Bam2Ba1nBa2nBamnB R(mp)×(nq)

性质

  1. 结合律
    ( A ⊗ B ) ⊗ C = A ⊗ ( B ⊗ C ) . (A \otimes B) \otimes C = A \otimes (B \otimes C). (AB)C=A(BC).

  2. 分配律
    A ⊗ ( B + C ) = A ⊗ B + A ⊗ C (若  B , C  同维) , A \otimes (B + C) = A \otimes B + A \otimes C \quad \text{(若 $B, C$ 同维)}, A(B+C)=AB+AC(若 B,C 同维),
    ( A + B ) ⊗ C = A ⊗ C + B ⊗ C (若  A , B  同维) . (A + B) \otimes C = A \otimes C + B \otimes C \quad \text{(若 $A, B$ 同维)}. (A+B)C=AC+BC(若 A,B 同维).

  3. 混合乘积性质
    若矩阵乘法 A C AC AC B D BD BD 满足矩阵乘法,则:
    ( A ⊗ B ) ( C ⊗ D ) = ( A C ) ⊗ ( B D ) . (A \otimes B)(C \otimes D) = (AC) \otimes (BD). (AB)(CD)=(AC)(BD).

  4. 转置
    ( A ⊗ B ) T = A T ⊗ B T . (A \otimes B)^T = A^T \otimes B^T. (AB)T=ATBT.

  5. 逆矩阵
    A A A B B B 可逆,则:
    ( A ⊗ B ) − 1 = A − 1 ⊗ B − 1 . (A \otimes B)^{-1} = A^{-1} \otimes B^{-1}. (AB)1=A1B1.

  6. 迹(Trace)
    A A A B B B 为方阵,则:
    t r ( A ⊗ B ) = t r ( A ) ⋅ t r ( B ) . \mathrm{tr}(A \otimes B) = \mathrm{tr}(A) \cdot \mathrm{tr}(B). tr(AB)=tr(A)tr(B).
    注:矩阵的迹为矩阵对角线元素求和

  7. 行列式
    A A A n × n n \times n n×n 方阵, B B B m × m m \times m m×m 方阵,则:
    det ⁡ ( A ⊗ B ) = det ⁡ ( A ) m ⋅ det ⁡ ( B ) n . \det(A \otimes B) = \det(A)^m \cdot \det(B)^n. det(AB)=det(A)mdet(B)n.


  8. r a n k ( A ⊗ B ) = r a n k ( A ) ⋅ r a n k ( B ) . \mathrm{rank}(A \otimes B) = \mathrm{rank}(A) \cdot \mathrm{rank}(B). rank(AB)=rank(A)rank(B).

  9. 单位矩阵
    I m ⊗ I n = I m n . I_m \otimes I_n = I_{mn}. ImIn=Imn.

  10. 向量化公式
    对任意矩阵 X X X,有:
    v e c ( A X B ) = ( B T ⊗ A ) v e c ( X ) . \mathrm{vec}(AXB) = (B^T \otimes A) \mathrm{vec}(X). vec(AXB)=(BTA)vec(X).

  11. p-范数
    对于 p p p-范数(如 p = 1 , 2 , ∞ p=1, 2, \infty p=1,2,),Kronecker积满足:
    ∥ A ⊗ B ∥ p = ∥ A ∥ p ⋅ ∥ B ∥ p . \|A \otimes B\|_p = \|A\|_p \cdot \|B\|_p. ABp=ApBp.
    p = 2 p=2 p=2时对应的是矩阵的Frobenius范数
    ∥ A ⊗ B ∥ F = ∥ A ∥ F ⋅ ∥ B ∥ F . \|A \otimes B\|_F = \|A\|_F \cdot \|B\|_F. ABF=AFBF.
    其中矩阵 A A A p p p-范数为:
    ∥ A ∥ p = ∑ i , j ∣ A i , j ∣ p 1 / p . \|A\|_p = \sqrt[1/p]{\sum_{i,j} |A_{i,j}|^p}. Ap=1/pi,jAi,jp .

  12. 特征值
    A A A B B B 为方阵,特征值分别为 λ i \lambda_i λi μ j \mu_j μj,则 A ⊗ B A \otimes B AB 的特征值为 λ i μ j \lambda_i \mu_j λiμj,对应的特征向量为 v i ⊗ w j v_i \otimes w_j viwj

  13. 谱范数(2-范数)
    ∥ A ⊗ B ∥ 2 = ∥ A ∥ 2 ⋅ ∥ B ∥ 2 . \|A \otimes B\|_2 = \|A\|_2 \cdot \|B\|_2. AB2=A2B2.
    其中矩阵 ( A ) 的谱范数为最大奇异值,即:
    ∥ A ∥ 2 = σ max ⁡ ( A ) . \|A\|_2 = \sigma_{\max}(A). A2=σmax(A).

  14. 幂运算
    A A A B B B 为方阵,则:

( A ⊗ B ) k = A k ⊗ B k . (A \otimes B)^k = A^k \otimes B^k. (AB)k=AkBk.

  1. 标量乘法
    对任意标量 c c c,有:
    c ( A ⊗ B ) = ( c A ) ⊗ B = A ⊗ ( c B ) . c(A \otimes B) = (cA) \otimes B = A \otimes (cB). c(AB)=(cA)B=A(cB).

应用示例

  • 矩阵方程:方程 A X + X B = C AX + XB = C AX+XB=C 可转化为:
    ( I ⊗ A + B T ⊗ I ) v e c ( X ) = v e c ( C ) . (I \otimes A + B^T \otimes I)\mathrm{vec}(X) = \mathrm{vec}(C). (IA+BTI)vec(X)=vec(C).
    其中 I I I的维度与 X X X的列数一致
  • 量子力学:复合系统的状态空间为各子系统空间的Kronecker积。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值