两题都是基本上是一样的,这里只贴出96题的原题:
给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \
3 2 1 1 3 2
/ / \
2 1 2 3
对于一个给定的n,他的所有的二叉树都满足以下条件:
任取 k(1—n之间)以k为root 节点 (k之前的为左子树 ,k之后的为右子树(左右子树都可以为空))
左子树可以构成的二叉树个数为 x个 右子树的为y个,则以k为root的话 可以构成 x*y个 把所有的k 构成的二叉树 和加起来 就是 n 对应二叉树的个数。
(ps:x和y 都是小于n的,所以他们对应的不同结构的二叉树的个数在之前 我们已经 求过了!!!!)
第95题,也是同样的道理{
但是 你需要存的东西发生了改变,你需要把之前的 子树状态都存下来,n=1对应的子树,n=2的时候也存下来,ps:你need 需要开一个二维数组 因为 n>=2之后对应的 二叉树搜索不止一个!!!m[i][j] m【i】表示 n=i时 所有的二叉树结构。
比如 n=6,k=3 的时候 (1,2一定在3的左边 4,5,6 一定在 3的右边)
4,5,6为3个元素(n=3我们其实早就算过了 所有的tree 都存在m【3】【】里,有人可能会有疑问 n=3的时候 我们存的是“1,2,3”对应的各种子树情况啊,但是 你要注意的是 4,5,6和1,2,3他们的搜索二叉树结构是完全一样的 你只需要 把 m【3】【】里面的各个元素都加上3就行了!!!)
}
代码如下(只给出了96题代码,上面看懂了,95题也是很简单):
int numTrees(int n) {
if (n <= 0)return 0;
vector<int>m(n + 1);
m[0] = 1; m[1] = 1;
for (int i = 2; i <= n; i++){
m[i] = 0;
for (int left_size = 0; left_size <= i - 1; left_size++){
int right_size = i - 1 - left_size;
m[i] += m[left_size] * m[right_size];
}
}
return m[n];
}