深度学习笔记
whieper
这个作者很懒,什么都没留下…
展开
-
1,应用数学与机器学习基础
线性代数标量(scalar):一个标量就是一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)向量(vector):一个向量是一列数。这些数是有序排列的。我们可以把向量看作空间中的点,每个元素是不同坐标轴上的坐标矩阵(matrix):矩阵是一个二维数组,其中的每一个元素被两个索引(而非一个)所确定张量(tensor):在某些情况下,我们会讨论坐标超过两维的数组...原创 2019-09-03 17:16:40 · 283 阅读 · 0 评论 -
3.概率论与信息论
概率论是用于表示不确定性声明的数学框架。它不仅提供了量化不确定性的方法,也提供了用于导出新的不确定性 声明(statement)的公理。首先,概率法则告诉我们 AI 系统如何推理,据此我们设计一些算法来计算或者估算由概率论导出的表达式。其次,我们可以用概率和统计从理论上分析我们提出的 AI 系统的行为。概率论使我们能够提出不确定的声明以及在不确定性存在的情况下进行推理,而信息论使我们能够量...原创 2019-09-03 17:16:28 · 699 阅读 · 0 评论