load LOAD.txt;
s=LOAD(1:5110);
ls=length(s);
%单尺度一维离散小波分解函数dwt的应用
%通过db4小波基进行三尺度小波分解
[c,l]=wavedec(s,3,‘db4’);
a1=appcoef(c,l,‘db4’,1);
%提取尺度1的低频系数
a2=appcoef(c,l,‘db4’,2);
%提取尺度2的低频系数
a3=appcoef(c,l,‘db4’,3);
%提取尺度3的低频系数
figure(1);
subplot(321);plot(a1);title(‘尺度1的低频系数’);
subplot(323);plot(a2);title(‘尺度2的低频系数’);
subplot(325);plot(a3);title(‘尺度3的低频系数’);
d1=detcoef(c,l,1);
d2=detcoef(c,l,2);
d3=detcoef(c,l,3);
subplot(322);plot(d1);title(‘尺度1的高频系数’);
subplot(324);plot(d2);title(‘尺度2的高频系数’);
subplot(326);plot(d2);title(‘尺度3的高频系数’);
c1=[a3,d3,d2,d1];
s1=waverec(c1,l,‘db4’);
figure(2);
subplot(312); plot(s1); title(‘含高频重构信号’);
err2=norm(s-s1);
%重构后误差为1.09E-09 (2 )高频置零后重建 当然,如果认为高频信息是不需要的时候,我们可以将高频信息置零后重构低频信息。
d3=zeros(1,length(d3));
d2=zeros(1,length(d2));
d1=zeros(1,length(d1));
c1=[a3,d3,d2,d1];
s1=waverec(c1,l,‘db4’);
subplot(311),plot(s);title(‘原信号’);
subplot(313),plot(s1),title(‘重构信号’);