自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(191)
  • 收藏
  • 关注

原创 【专栏导引贴】100+时频域信号处理算法:从背景原理到代码实战(持续更新)

本专栏将收录100+优近几年经典、先进的时频域信号处理算法,从小波分析到经验模态分解,兼具理论公式和代码实践,具有统一的编程风格、行文逻辑,实例代码可实用!!!未来将继续加入更多算法,持续更新。

2026-01-19 17:02:45 1009

原创 【专栏导引贴】100+智能优化算法:从背景原理到代码实战(持续更新)

本专栏系统整理100+种现代优化算法,涵盖粒子群优化(PSO)、遗传算法(GA)、鲸鱼优化(WOA)等经典方法,以及白鲸优化(BWO)、非洲秃鹫优化(AVOA)等新兴算法。每篇详解包含生物启发原理、数学模型、代码实现及工程应用,采用统一编程风格,提供可直接运行的实例代码。专栏持续更新,旨在为研究者提供系统化的智能优化算法参考资料,实现从理论到实践的完整知识链。目前已收录23种算法,包括蚁群系统(ACS)、蝙蝠算法(BA)、天牛须搜索(BAS)等自然启发式优化方法。

2025-12-22 16:57:32 1968

原创 【资源导引贴】20+时频域信号处理方法Matlab源码(持续更新)

本文持续更新,目前汇总了9种基于MATLAB的信号分解算法实现资源,涵盖CEEMDAN、VMD、EMD、SSA、EWT、WPD、MEMD、MVMD和TVF-EMD等方法。这些算法均针对非线性、非平稳信号处理设计,具有自适应分解特性,可有效解决模态混叠、端点效应等问题。其中,CEEMDAN通过噪声辅助提升分解完备性;VMD基于变分优化理论;EMD为经典数据驱动方法;SSA采用奇异值分解;EWT结合小波变换优势;WPD提供精细频带划分;MEMD和MVMD专为多元信号设计;TVF-EMD引入时变滤波技术。

2025-12-22 16:24:08 1306

原创 基于MATLAB的自适应最优核时频分布(AOK)算法详解

本文详细介绍了基于MATLAB的自适应最优核时频分布(AOK)算法。AOK算法通过自适应调整核函数,有效解决了传统时频分析方法中交叉项干扰与分辨率受限的问题。文章从算法原理、数学模型到MATLAB实现进行了系统阐述,包括核函数自适应优化原理、径向高斯核数学建模以及完整的算法流程。该算法在机械故障诊断、语音信号处理和生物医学信号分析等领域具有重要应用价值。MATLAB实现部分提供了核心代码框架,展示了短时模糊函数计算、最优核函数优化等关键步骤。

2026-01-28 22:17:09 9

原创 贫富优化算法(PRO)详解:从社会现象到智能优化

贫富优化算法(PRO)是一种受社会经济阶层分化现象启发的新型元启发式优化算法。该算法将社会个体映射为候选解,财富水平对应适应度值,通过模拟贫富群体间的动态交互实现优化。PRO的核心机制包括:1)将种群划分为贫富两个子群体;2)富人通过扩大与穷人的差距进行全局探索;3)穷人通过学习富人模式实现局部开发;4)引入突变机制保持多样性。算法具有参数少、收敛快、平衡探索与开发能力强的特点,在工程优化等领域展现出优越性能。PRO为优化算法设计提供了基于社会经济现象的新视角,其直观的社会隐喻使其概念易于理解。

2026-01-28 22:14:28 10

原创 人类学习优化算法(HLO)详解:从生物学习到全局优化

人类学习优化算法(Human Learning Optimization,HLO)是一种受人类学习过程启发的新型元启发式优化算法,其核心思想源于认知科学中的人类学习理论。该算法通过模拟人类在解决问题时采用的随机探索、个体经验积累和社会知识共享三种基本学习行为,实现在复杂搜索空间中的高效优化。

2026-01-28 22:13:11 157

原创 原子搜索算法(ASO)详解:从物理原理到智能优化

原子搜索算法(ASO)是一种受分子动力学启发的智能优化算法,通过模拟原子间的相互作用力和约束力来指导搜索过程。该算法将候选解映射为原子,适应度值对应原子质量,利用Lennard-Jones势函数建立作用力模型,结合Kbest机制平衡全局探索与局部开发。ASO具有物理基础扎实、参数少、收敛快等特点,在高维复杂优化问题中表现出色,已成功应用于工程优化和机器学习等领域。

2026-01-26 09:39:58 94

原创 探路者优化算法(PFA)详解:从群体智能到全局优化

本文系统介绍了探路者优化算法(PFA)的原理、实现与应用。PFA是一种基于群体智能的新型元启发式算法,模拟动物群体中领导与跟随的协作机制进行优化。文章详细阐述了PFA的生物基础、数学模型、代码实现及改进方法,包括QHIPFA和ASDR-PFA等变体。该算法通过探路者引导和跟随者协同搜索的机制,在函数优化、路径规划等领域展现出良好性能。最后总结了PFA的优势与局限性,并展望了未来发展方向。

2026-01-26 09:39:42 318

原创 基于MATLAB的加伯变换(GT)算法完整解析

摘要(148字): 本文系统解析了基于MATLAB的加伯变换(GT)算法。首先阐述了傅里叶变换的局限性及加伯变换的创新性,指出高斯窗函数在时频分析中的最优特性。详细推导了连续/离散Gabor变换的数学模型,包括二维扩展形式。通过MATLAB代码示例展示了一维Gabor变换的实现过程,涉及高斯窗生成、时频参数设置等关键技术。文章还探讨了临界采样与过采样策略的选择,以及Gabor变换在语音处理、图像分析等领域的典型应用。最后总结了该算法的优势(时频分辨率平衡、抗噪性强)和发展方向(自适应改进、多分辨率分析)。

2026-01-25 14:52:36 220

原创 菲克定律算法(FLA)详解:从物理扩散到智能优化

菲克定律算法(FLA)是一种基于分子扩散原理的新型元启发式优化算法。该算法将菲克定律描述的物理扩散现象映射为优化搜索过程:分子对应候选解,浓度梯度指导搜索方向。FLA采用三阶段搜索策略:扩散阶段(DO)进行全局探索,平衡阶段(EO)实现过渡,稳态阶段(SSO)进行局部开发。核心创新在于引入非线性传递函数控制阶段转换,以及基于浓度差异的自适应更新机制。相比传统算法,FLA具有物理概念清晰、参数少、全局搜索能力强等优势,特别适合复杂多模态优化问题。算法已在多个测试函数和实际工程问题中展现出优异性能。

2026-01-25 14:52:22 17

原创 头脑风暴优化算法(BSO)详解:从群体智慧到全局优化

头脑风暴优化算法(BSO)是一种模拟人类群体创造性思维过程的智能优化算法。文章系统介绍了BSO算法的生物基础、原理与数学模型、实现方法、改进策略以及应用案例。算法通过模拟头脑风暴中的聚类、变异和融合等过程,在解空间中寻找最优解。主要内容包括:1)算法起源与发展历程;2)核心数学模型与流程;3)Python和MATLAB实现;4)自适应改进与多目标扩展;5)在函数优化、路径规划等领域的应用案例。BSO算法结合了群体智能与创造性思维机制,具有较好的全局搜索能力,在复杂优化问题中展现出良好性能。

2026-01-25 14:52:04 14

原创 基于MATLAB的短时傅里叶变换(STFT)算法详解

本文详细介绍了基于MATLAB的短时傅里叶变换(STFT)算法。STFT通过引入时域窗函数克服了传统傅里叶变换无法分析非平稳信号的局限性,实现了时频联合分析。文章系统阐述了STFT的数学原理、窗函数设计、时频分辨率权衡等核心概念,并提供了MATLAB实现方法,包括内置函数使用和自定义代码解析。此外,还探讨了STFT的改进算法和实际应用案例,如语音信号处理、故障诊断等。最后总结了STFT的优势与局限,并展望了未来发展方向。该算法因其简单高效、参数灵活等特点,已成为时频分析的基础工具。

2026-01-24 08:35:11 148

原创 基于MATLAB的最大重叠离散小波变换(MODWT)算法详解

本文详细介绍了基于MATLAB的最大重叠离散小波变换(MODWT)算法。首先阐述了小波变换发展历程和传统DWT的局限性,重点分析了MODWT的创新优势,包括平移不变性和任意信号长度处理能力。文章从多分辨率分析框架出发,建立了MODWT的数学模型,比较了其与DWT的关键差异。在实现层面,详细解析了MATLAB中的核心函数使用方法和参数优化策略,并提供了ECG信号处理等应用案例。MODWT凭借其优异的时频分析特性,在生物医学信号处理、机械故障诊断等领域展现出重要价值。

2026-01-24 08:34:55 21

原创 逻辑优化算法(FLA)详解:从生物进化到工程优化

逻辑优化算法是一类受自然进化过程启发的智能优化算法,其核心思想源于达尔文的"物竞天择,适者生存"的生物进化理论。遗传算法作为逻辑优化算法的典型代表,由John Holland于1975年在其著作《自然和人工系统的适配》中首次系统提出。该算法模拟了生物进化过程中的自然选择、遗传变异和种群进化机制,通过模拟生物种群的进化过程来解决复杂优化问题。

2026-01-24 08:34:41 13

原创 凌日搜索算法(TS)详解:从宇宙现象到智能优化

凌日搜索算法(TS)是一种新型元启发式优化算法,灵感来源于天文观测中的凌日现象。该算法通过模拟恒星亮度变化检测过程,建立了从天文现象到优化问题的映射关系:恒星对应候选解,亮度变化反映适应度改进。TS算法包含星系阶段(全局探索)、凌日阶段(事件检测)、行星阶段(局部搜索)和邻居阶段(邻域优化)四个核心环节。其数学模型基于光度测量原理,通过信噪比(SN)和主星数(ns)等参数控制搜索精度和多样性。相比传统算法,TS具有参数简单、全局搜索能力强和收敛速度快等优势,特别适合处理高维复杂优化问题。

2026-01-24 08:34:04 14

原创 基于MATLAB的离散小波变换(DWT)算法详解

本文详细介绍了基于MATLAB的离散小波变换(DWT)算法。首先阐述了小波变换的发展历程及其相较于傅里叶变换的优势,特别是时频局部化能力和多分辨率特性。随后深入讲解了DWT的数学原理,包括多分辨率分析理论、尺度函数与小波函数的定义以及Mallat快速算法。文章还提供了MATLAB实现代码,涵盖一维DWT分解重构、二维DWT图像处理以及边界处理策略等内容。最后探讨了DWT在信号去噪、图像压缩等领域的应用案例。该算法在非平稳信号处理中展现出计算高效、自适应性强等显著优势。

2026-01-23 09:26:13 25

原创 莱维飞行分布算法(LFD)详解:从生物觅食到全局优化

本文系统介绍了莱维飞行分布算法(LFD)的理论基础、数学模型与优化应用。文章首先阐述了莱维飞行的数学起源与生物觅食行为中的实证现象,揭示了该算法模拟生物最优搜索策略的本质。通过详细解析Mantegna步长生成机制和算法数学模型,阐明了LFD利用重尾分布平衡全局探索与局部开发的核心原理。文章还提供了Python/Matlab实现指南,并探讨了混合改进策略、自适应变体等算法优化方向。典型应用案例验证了LFD在函数优化、WSN覆盖等领域的优越性能,同时分析了算法局限性与未来发展方向。全文构建了从理论基础到工程实践

2026-01-23 09:04:35 14

原创 基于MATLAB的再生相移正弦辅助经验模态分解(RPSEMD)算法详解

本文详细介绍了再生相移正弦辅助经验模态分解(RPSEMD)算法,该算法通过引入再生相移正弦波辅助机制,有效解决了传统EMD中的模态混叠问题。文章首先回顾了信号分解方法的发展历程,阐述了RPSEMD的创新点和优势;然后深入解析了算法原理和数学模型,重点说明了相移机制和模态混叠抑制机制;最后通过对比分析展示了RPSEMD在计算效率和分解效果上的显著优势。该算法在机械故障诊断、生物医学信号处理等领域具有重要应用价值。

2026-01-23 09:04:11 15

原创 广义正态分布优化算法(GNDO)详解:从理论到实践

广义正态分布优化算法(GNDO)是一种基于正态分布理论的新型元启发式优化算法。该算法通过局部开发和全局探索两种策略平衡搜索过程:局部开发利用广义平均位置和标准差进行精细搜索,而全局探索通过随机个体信息共享扩大搜索范围。GNDO具有参数少、结构简单、收敛速度快等优点,在光伏模型参数提取等工程优化问题中表现优异。算法将种群位置更新与正态分布参数调整相联系,通过自适应机制平衡探索与开发,数学分析表明其具有全局收敛性。相比传统优化算法,GNDO在探索能力和开发能力上均有优势,是高维复杂优化问题的有效解决方案。

2026-01-23 09:03:58 27

原创 阿基米德优化算法(AOA)详解:从浮力原理到全局优化

阿基米德优化算法(AOA)是一种新型元启发式优化算法,灵感来源于阿基米德浮力原理。该算法将优化问题的候选解模拟为流体中的物体,通过浮力平衡过程指导搜索。AOA包含探索和开发两个阶段,分别采用不同的数学模型更新物体位置。算法通过密度因子和转移算子平衡全局探索与局部开发,具有参数设置合理、搜索能力强等特点。AOA已成功应用于函数优化、工程设计和机器学习等领域,并衍生出多种改进版本。本文详细介绍了AOA的物理基础、数学模型、实现方法及应用案例,为优化问题提供了新的解决思路。

2026-01-23 09:03:47 12

原创 基于MATLAB的群分解(SWD)算法详解

摘要 本文详细介绍了基于MATLAB的群分解(SWD)算法。SWD是一种受蜂群智能启发的新型信号分解方法,通过模拟蜂群捕食行为自适应分解非平稳信号。文章系统阐述了SWD的理论基础、数学模型和实现步骤,包括信号预处理、群体初始化、迭代搜索和分量重构等核心流程。与传统方法(如EMD、VMD)相比,SWD具有自适应性强、计算效率高、模态混叠轻等优势,适用于机械故障诊断、生物医学信号处理等领域。MATLAB实现部分展示了核心函数、参数优化和可视化工具,并通过轴承故障诊断等案例验证了算法的有效性。

2026-01-22 10:42:56 21

原创 黑寡妇优化算法(BWO)详解:从生物行为到智能优化

黑寡妇优化算法(BWO)是一种模拟黑寡妇蜘蛛繁殖行为的智能优化算法。该算法通过将蜘蛛的生物特性映射为数学操作,包括繁殖阶段(全局探索)、同类相食阶段(优胜劣汰)和突变阶段(局部搜索)。BWO具有参数简单、收敛快、全局搜索能力强等特点,在多模态和高维优化问题中表现优异。算法通过生殖率、同类相食率和突变率的动态调整,平衡探索与开发能力。相比传统优化算法,BWO在复杂工程优化问题中展现出独特优势,其生物启发的优化机制为智能计算提供了新思路。

2026-01-22 10:41:17 13

原创 亨利气体溶解优化算法(HGSO)详解:从气体溶解原理到全局优化

亨利气体溶解优化算法(HGSO)是一种新型元启发式优化算法,灵感来源于亨利气体溶解定律。该算法通过模拟气体在液体中的溶解行为,将优化问题的候选解表示为气体分子,溶解度对应适应度值。HGSO包含初始化分簇、亨利系数更新、溶解度计算和位置更新等核心机制,通过温度衰减模型平衡全局探索与局部开发。算法具有物理原理新颖、参数设置合理等优势,已成功应用于函数优化、工程设计和机器学习等领域。HGSO的发展经历了提出、改进和应用三个阶段,未来有望在多目标优化和智能系统方面取得更多突破。

2026-01-22 10:40:06 14

原创 基于MATLAB的互补集合经验模态分解(CEEMD)算法详解

本文详细介绍了互补集合经验模态分解(CEEMD)算法的原理与实现。CEEMD是在传统经验模态分解(EMD)基础上改进的信号处理方法,通过引入互补噪声对有效解决了EMD的模态混叠问题。文章系统阐述了CEEMD的数学原理、参数选择策略及MATLAB实现方法,并分析了其在机械故障诊断、生物信号处理等领域的应用优势。相比EEMD,CEEMD具有残余噪声更低、计算效率更高的特点,是处理非平稳非线性信号的有力工具。

2026-01-22 10:38:04 16

原创 基于MATLAB的极点对称模态分解(ESMD)算法详解

本文详细介绍了极点对称模态分解(ESMD)算法的原理、实现及应用。ESMD是一种基于极点对称原理的自适应信号分解方法,相比传统EMD具有更强的抗噪能力和更轻的模态混叠效应。文章系统阐述了ESMD的数学模型、核心算法步骤及MATLAB实现,包括极值点检测、包络线构建、局部均值计算等关键环节。同时探讨了ESMD的多种改进方法,如自适应ESMD、ESMD-MA混合算法等,并通过轴承故障诊断、金融分析等案例展示了其实际应用效果。最后总结了ESMD的优势与局限,并展望了未来研究方向。

2026-01-21 09:19:01 16

原创 基于MATLAB的鲁棒局部均值分解(RLMD)算法详解

本文详细介绍了鲁棒局部均值分解(RLMD)算法,这是一种改进的自适应信号处理方法。RLMD在传统局部均值分解(LMD)基础上,通过引入鲁棒统计方法和自适应优化策略,显著提升了算法性能。核心创新包括:基于中位数绝对偏差的鲁棒极值点检测、自适应滑动窗口平滑、改进的包络估计和智能停止准则。RLMD具有更强的噪声鲁棒性、更好的端点效应控制和更高的分解精度,已成功应用于机械故障诊断、生物医学信号处理等领域。文章系统阐述了RLMD的数学原理、实现方法、改进方向和应用案例,为信号处理领域提供了一种有效的分析工具。

2026-01-21 09:15:09 141

原创 驾驶训练优化算法(DTBO)详解:从新手到专家的智能优化之旅

驾驶训练优化算法(Driving Training-Based Optimization, DTBO)是一种模拟人类驾驶学习过程的元启发式算法,由Dehghani等人于2022年提出。该算法的设计灵感来源于驾校中的驾驶员培训体系,其中学习驾驶员(学员)在驾驶教练的指导下,通过分阶段、循序渐进的方式掌握驾驶技能这一自然过程。

2026-01-21 09:14:58 13

原创 梯度优化器(GBO)详解:从基础理论到实践应用

本文系统解析了梯度优化器(GBO)的理论基础与实践应用。首先介绍了优化器的生物基础与发展历程,包括基本概念、重要性及面临的挑战。随后详细阐述了梯度下降三大变体(BGD、SGD、MBGD)、动量优化方法(经典动量法、NAG)和自适应学习率算法(Adagrad、RMSprop、Adam)的数学模型。文章还提供了Python实现代码,并探讨了AdamW等高级优化算法。最后通过计算机视觉、自然语言处理等应用案例,展示了不同优化器的实际效果。全文为深度学习实践者提供了从理论到实现的全面指导。

2026-01-21 09:14:47 22

原创 基于MATLAB的鲁棒经验模态分解(REMD)算法详解

本文系统介绍了基于MATLAB的鲁棒经验模态分解(REMD)算法实现。REMD通过引入稳健统计方法和自适应筛分停止准则,有效改进了传统EMD对噪声敏感、模态混叠等问题。文章详细阐述了REMD的算法原理、数学模型及MATLAB实现过程,包括鲁棒包络估计、Bootstrap稳定性评估等关键技术。通过机械故障诊断、生物医学信号处理等应用案例验证了REMD的优越性能。相比传统EMD及其变体,REMD具有更强的鲁棒性和自适应性,为复杂信号处理提供了可靠解决方案。

2026-01-20 08:52:55 25

原创 基于MATLAB的辛几何模态分解(SGMD)算法详解

本文详细介绍了基于MATLAB的辛几何模态分解(SGMD)算法。SGMD是一种新型信号分解方法,基于辛几何理论和非线性动力学系统理论,通过辛几何相似变换求解哈密顿矩阵特征值实现信号分解。相比传统方法(如EMD、VMD),SGMD具有理论基础坚实、自适应性强、噪声鲁棒性好等优势。文章系统阐述了SGMD的算法原理、数学模型、实现步骤及改进方法,包括相空间重构、辛几何相似变换、特征值分解与模态重构等核心环节,并提供了MATLAB实现代码解析。通过轴承故障诊断等应用案例验证了SGMD的有效性。

2026-01-20 08:52:22 16

原创 基于MATLAB的特征模式分解(FMD)算法详解

本文详细介绍了基于MATLAB的特征模式分解(FMD)算法实现。FMD是一种新型自适应信号分解方法,通过自适应FIR滤波器组和相关峭度优化目标,有效解决传统方法(如EMD、VMD)的模态混叠问题。文章系统阐述了FMD的算法原理、数学模型和实现步骤,包括自适应FIR滤波器设计、相关峭度优化和模态选择机制。与现有方法相比,FMD在旋转机械故障诊断中展现出更强的特征提取能力和噪声鲁棒性。MATLAB实现部分包含核心函数、参数优化和可视化工具,并通过轴承故障等案例验证了算法的有效性。

2026-01-20 08:52:07 16

原创 基于MATLAB的改进的完全自适应噪声集合经验模态分解(ICEEMDAN)算法详解

本文全面介绍了ICEEMDAN(改进的自适应噪声完备集合经验模态分解)算法,包括其发展背景、原理实现和应用案例。ICEEMDAN是对传统EMD方法的重大改进,通过自适应噪声控制和改进的残余项处理策略,有效解决了模态混叠和噪声敏感性问题。文章详细阐述了算法的数学原理和实现步骤,包括核心概念定义、算法流程和数学模型分析。与EMD、EEMD等传统方法相比,ICEEMDAN具有更好的模态分离能力和噪声鲁棒性。该算法已成功应用于机械故障诊断、生物医学信号处理等多个领域。

2026-01-20 08:51:56 147

原创 基于MATLAB的逐次变分模态分解(SVMD)算法详解

本文详细介绍了基于MATLAB的逐次变分模态分解(SVMD)算法。SVMD是一种改进的变分模态分解方法,通过逐次分解机制克服传统VMD算法需要预设模态数量的缺陷。文章从信号分解方法的发展历程入手,阐述了SVMD的核心优势与创新点,包括参数敏感性降低、自适应分解能力和更好的频率分离性能。详细解析了SVMD的数学模型和优化求解过程,重点讨论了变分问题构建、ADMM优化方法和停止准则设计。通过MATLAB代码实现展示了SVMD的具体应用,包括参数初始化、信号预处理、模态提取和残余信号更新等关键步骤。

2026-01-20 08:51:41 18

原创 减法平均优化器(SABO)算法详解:从数学原理到工程应用

减法平均优化器(SABO)是一种基于数学概念的新型元启发式优化算法,由Trojanovský和Dehghani于2023年提出。该算法通过v-减法运算和平均值计算实现搜索优化,核心创新是采用目标函数值差异符号引导搜索方向。SABO具有参数少、结构简单、收敛快等特点,在高维复杂问题中表现优异。算法通过种群平均值保持多样性,利用符号函数确保搜索方向改进,自然平衡探索与开发。MATLAB实现显示其计算复杂度为O(N²·D),与主流群体智能算法相当。SABO不依赖生物或物理隐喻,数学基础坚实,在工程优化和机器学习领

2026-01-20 08:51:20 14

原创 烹饪培训优化算法(CBOA)详解:从厨房智慧到全局优化

烹饪培训优化算法(CBOA)是一种新型元启发式优化算法,灵感来源于烹饪学校的教学模式。该算法通过模拟厨师导师指导学员提升烹饪技能的过程,将优化问题的求解转化为学员在导师指导下逐步改进技能的过程。文章详细介绍了CBOA的生物基础、数学模型、实现方法和应用案例,包括算法初始化、导师更新机制、学员学习机制等核心环节。CBOA在函数优化、工程设计和机器学习参数优化等领域展现出良好性能,具有探索与开发平衡、参数设置合理等优势。文章还探讨了算法的改进方向和应用前景,为优化问题提供了新的解决方案。

2026-01-20 08:51:07 19

原创 基于MATLAB的固有时间尺度分解(ITD)算法完整实现

本文全面介绍了固有时间尺度分解(ITD)算法的原理与实现。ITD是一种自适应信号处理方法,通过线性变换提取基线信号,克服了传统经验模态分解(EMD)计算复杂、端点效应明显等缺点。文章详细阐述了ITD的数学模型、极值点检测、PR分量提取等核心步骤,并提供了完整的MATLAB实现代码。ITD在机械故障诊断、生物医学信号处理等领域有广泛应用,相比EMD具有计算效率高、端点效应小等优势。文中还讨论了ITD的改进方向和应用案例,为信号处理领域的研究者提供了实用参考。

2026-01-19 16:58:32 26

原创 基于MATLAB的局部均值分解(LMD)算法详解

本文详细介绍了基于MATLAB的局部均值分解(LMD)算法。LMD是一种自适应信号处理方法,通过迭代将复杂信号分解为多个乘积函数(PF),有效克服了传统经验模态分解(EMD)的模态混叠等问题。文章系统阐述了LMD的算法原理、数学模型和MATLAB实现,包括局部均值与包络计算、PF提取过程以及瞬时频率求解。同时介绍了LMD的改进算法如RLMD和ELMD,并展示了其在机械故障诊断、生物医学信号处理等领域的应用案例。与EMD相比,LMD具有分解更稳健、端点效应更小等优势,为非线性非平稳信号分析提供了有效工具。

2026-01-19 16:51:05 17

原创 基于MATLAB的时变滤波经验模态分解(TVF-EMD)算法详解

本文详细介绍了时变滤波经验模态分解(TVF-EMD)算法,该算法是对传统EMD的重要改进。TVF-EMD通过引入时变滤波技术和自适应局部截止频率设计,有效解决了传统EMD的模态混叠和间歇性问题。文章系统阐述了TVF-EMD的算法原理、数学模型和实现步骤,包括时变滤波器设计、非均匀B样条近似、局部窄带信号停止准则等核心内容。相比传统EMD及其变体,TVF-EMD具有更好的频率分离性能和抗噪声干扰能力。该算法已成功应用于机械故障诊断、生物医学信号处理等多个领域,为非平稳信号分析提供了更有效的解决方案。

2026-01-19 16:49:43 18

原创 基于MATLAB的多元变分模态分解(MVMD)算法详解

本文详细介绍了多元变分模态分解(MVMD)算法,这是一种用于处理多元信号的自适应分解方法。文章从信号分解方法的发展历程入手,阐述了MVMD从VMD演进而来的过程及其核心优势。在算法原理部分,重点讲解了MVMD的数学模型构建、增广拉格朗日函数和ADMM求解方法。MATLAB实现章节提供了代码解析和参数优化策略。文章还探讨了MVMD的多种改进变体,并通过信号去噪、故障诊断等案例展示了其实际应用价值。最后总结了MVMD的优势与局限,展望了未来研究方向。MVMD在多变量同步处理、模式对齐和噪声鲁棒性方面表现突出,为

2026-01-19 16:35:54 19

原创 水基湍流优化算法(TFWO)详解:从自然现象到智能优化

水基湍流优化算法(TFWO)是一种受流体湍流现象启发的智能优化算法。该算法模拟水流中漩涡对粒子的吸引和排斥作用,将优化问题映射为漩涡行为:水流粒子代表潜在解,漩涡中心对应当前最优解。TFWO通过向心力机制实现局部搜索,利用离心力机制保持全局探索能力,并通过漩涡间相互作用实现信息共享。算法无需参数调优,具有固定结构,在收敛性和鲁棒性方面表现优异。其核心数学建模包括漩涡角度更新、位置增量计算和离心力判断等机制,有效平衡了探索与开发过程。TFWO已被证明在多种优化问题上具有竞争力。

2026-01-19 16:33:57 14

SVMD:基于MATLAB的逐次变分模态分解(SVMD)算法的完整实现

逐次变分模态分解(Successive Variational Mode Decomposition, SVMD)是一种基于变分模态分解(VMD)改进的自适应信号处理方法。它通过引入参数优化机制,解决了传统VMD对模态个数设置敏感的问题,能够更有效地处理非平稳、非线性信号。SVMD的核心思想是通过迭代优化惩罚参数(maxAlpha),自适应地确定信号中各模态的最佳中心频率和带宽,从而实现对复杂信号的精确分解。与VMD相比,SVMD减少了对预设模态数量的依赖,提高了子模态分量的提取效率和分解质量。该方法在机械故障诊断、生物医学信号处理、金融时间序列分析等领域具有广泛应用价值,特别适合处理具有多尺度特征的工程信号。

2025-12-22

ICEEMDAN:基于MATLAB的改进的完全自适应噪声集合经验模态分解(ICEEMDAN)算法的完整实现

改进的完全自适应噪声集合经验模态分解(ICEEMDAN)是CEEMDAN的重要增强版本,通过改进噪声添加策略和残差计算方式解决了传统CEEMDAN可能存在的残留噪声问题。该算法的核心创新在于自适应噪声注入机制——不是在原始信号中直接添加高斯白噪声,而是将特定本征模态函数(IMF)分量作为自适应噪声添加到残差信号中。这种改进显著提高了模态分离精度,有效减少了重构误差,同时保持了计算效率。ICEEMDAN能够将复杂信号自适应地分解为多个具有物理意义的IMF分量,每个分量代表信号在不同时间尺度上的振荡模式。相比CEEMDAN和EEMD,ICEEMDAN在模态纯净度、分解完备性和计算稳定性方面均有显著提升,特别适用于处理非线性、非平稳信号,在机械故障诊断、生物医学信号分析和地震数据处理等领域具有重要应用价值。

2025-12-22

RLMD:基于MATLAB的鲁棒局部均值分解(RLMD)算法的完整实现

鲁棒局部均值分解(Robust Local Mean Decomposition, RLMD)是对传统局部均值分解(LMD)的改进,旨在提高对噪声和异常值的鲁棒性。RLMD通过引入自适应滤波器和鲁棒性因子,优化了局部均值和包络函数的估计过程,从而更准确地提取信号的乘积函数(Product Functions, PFs)。每个PF由包络信号和纯调频信号相乘得到,能够清晰反映信号的瞬时频率和幅度特征。RLMD在机械故障诊断、生物医学信号处理等领域表现出色,尤其适用于非平稳、非线性信号的分析。

2025-12-22

ESMD:基于MATLAB的极点对称模态分解(ESMD)算法的完整实现

极点对称模态分解(Empirical mode decomposition with Symmetric poles,ESMD)是一种自适应信号处理方法,它通过识别信号中的极值点并构建对称的包络线,将复杂信号分解为多个本征模态函数(IMF)和一个残余项。ESMD 的核心优势在于其对端点效应的有效抑制,通过镜像延拓技术减少边界失真,同时采用自适应筛选过程确保每个 IMF 满足瞬时频率的物理意义。该方法无需预设基函数,完全由数据驱动,特别适合处理非线性、非平稳信号,在机械故障诊断、生物医学信号分析和地震数据处理等领域具有广泛应用。相较于传统经验模态分解(EMD),ESMD 在模态混叠控制和计算效率方面表现更优。

2025-12-22

CEEMD:基于MATLAB的互补集合经验模态分解(CEEMD)算法的完整实现

互补集合经验模态分解(CEEMD)是对传统经验模态分解(EMD)和集合经验模态分解(EEMD)的重要改进。CEEMD通过向原始信号中添加成对的正负白噪声,然后进行多次EMD分解并集合平均,有效解决了EMD的模态混叠问题和EEMD的重构误差问题。与EEMD相比,CEEMD利用互补噪声对在集合平均过程中相互抵消的特性,显著降低了残余辅助噪声,从而能够以更少的平均次数获得更纯净的模态分量。这种方法的优势在于能够在保持信号本质特征的同时,提高分解的准确性和计算效率,特别适用于处理非线性、非平稳信号,在机械故障诊断、生物医学信号分析和地震数据处理等领域具有广泛应用价值。

2025-12-22

MODWT:基于MATLAB的最大重叠离散小波变换(MODWT)算法的完整实现

最大重叠离散小波变换(MODWT)是传统离散小波变换(DWT)的重要扩展,它通过最大重叠的滑动窗口方式进行多尺度分解,有效克服了DWT的平移敏感性和对数据长度的严格限制。MODWT的核心优势在于其平移不变性和冗余分解特性,能够更精确地捕捉信号的局部特征,同时提供丰富的时频局部化信息。与DWT相比,MODWT对信号长度没有严格要求(无需是2的幂次方),且每个分解层级都包含相同数量的系数,极大方便了多尺度分析与重构。该方法已广泛应用于信号去噪、特征提取、非平稳信号分析等领域,特别适合处理具有复杂时频特性的实时信号。

2025-12-22

DWT:基于MATLAB的离散小波变换(DWT)算法的完整实现

离散小波变换(Discrete Wavelet Transform, DWT)是一种强大的信号处理工具,它通过将信号分解为不同频率的子带,从而在时域和频域上同时提供良好的局部化特性。与傅里叶变换只能提供全局频率信息不同,DWT利用称为“小波”的衰减振荡波形,能够有效分析非平稳信号,捕捉信号的瞬态特征。其核心思想是通过缩放(对应频率)和平移(对应时间)母小波来匹配信号,实现多分辨率分析。DWT在数据压缩、噪声滤除、特征提取等领域应用广泛,例如JPEG 2000图像压缩标准就采用了小波变换。MATLAB提供了完整的小波分析工具箱,使得DWT的实现变得简单高效。

2025-12-22

RPSEMD:基于MATLAB的再生相移正弦辅助经验模态分解(RPSEMD)算法的完整实现

再生相移正弦辅助经验模态分解(RPSEMD)是一种针对传统经验模态分解(EMD)在处理包含间歇性成分的信号时容易产生模态混叠问题而提出的改进算法。它通过自适应地生成和添加不同尺度的相移正弦波来辅助分解过程,有效分离不同时间尺度的振荡模式,从而抑制模态混叠。与集成经验模态分解(EEMD)等添加随机白噪声的方法相比,RPSEMD通过确定性正弦波干预,减少了计算开销,并借助相移技术更好地保留本征模态分量(IMF)的细节特征。该方法为处理非线性、非平稳信号提供了新的思路,在机械故障诊断、生物医学信号分析等领域具有应用潜力。

2025-12-22

SWD:基于MATLAB的群分解(SWD)算法的完整实现

群分解(Swarm Decomposition, SWD)是一种基于群体智能理念的自适应信号处理技术。它模仿蜂群等生物群体的集体行为模式,将信号分解过程视为一个“群体捕猎”的智能过程——不同的“搜索小组”会自适应地锁定并追踪信号中不同尺度的振荡成分。该方法能够不依赖预设基函数,直接将复杂信号分解为一系列具有物理意义的群分量(Swarm Components)。SWD的核心优势在于其强大的自适应能力和对模态混叠问题的有效抑制。它通过群体智能算法识别信号中的不同特征模式,特别适用于分析非线性、非平稳信号,在机械故障诊断、生物医学信号分析等领域有应用潜力。

2025-12-22

SGMD:基于MATLAB的辛几何模态分解(SGMD)算法的完整实现

辛几何模态分解(Symplectic Geometric Mode Decomposition, SGMD)是一种基于辛几何理论的自适应信号处理方法,它通过构建信号的轨迹矩阵并利用辛几何相似变换求解哈密顿矩阵的特征值,从而将复杂信号分解为一系列辛几何分量(SGC)。SGMD的核心优势在于其完全数据驱动的特性,无需预设基函数或敏感参数,能够有效克服传统方法(如EMD)的模态混叠和端点效应问题。该方法特别适用于处理非线性、非平稳信号,并具有良好的噪声鲁棒性。SGMD通过保持信号在相空间中的几何结构,确保分解后的各分量具有明确的物理意义,在机械故障诊断、生物医学信号分析等领域展现出重要应用价值。

2025-12-22

REMD:基于MATLAB的鲁棒经验模态分解(REMD)算法的完整实现

鲁棒经验模态分解(Robust Empirical Mode Decomposition, REMD)是针对传统EMD算法在噪声干扰和异常值存在情况下稳定性不足的问题而提出的改进方法。它通过引入稳健的局部均值估计和自适应筛选停止准则,有效抑制了异常极值点对包络拟合的负面影响,从而显著提高了分解结果的可靠性。与传统EMD相比,REMD采用加权最小二乘或核回归等稳健估计技术计算信号的局部均值函数,降低脉冲噪声和离群点对包络线构造的影响。该方法在机械故障诊断、生物医学信号处理等强噪声环境下的信号分析中表现出色,能够更准确地提取信号的本质模态特征。

2025-12-22

FMD:基于MATLAB的特征模式分解(FMD)算法的完整实现

特征模式分解(Feature Mode Decomposition, FMD)是一种基于信号特征空间投影的自适应信号分解方法,专为处理非线性、非平稳信号而设计。FMD的核心思想是通过自适应有限脉冲响应(FIR)滤波器组将复杂信号分解为多个物理意义明确的特征模态分量(FMC),每个分量代表信号在不同时间尺度上的振荡模式。与传统方法(如EMD或VMD)相比,FMD的创新点在于其以相关峰度作为优化目标,同时考虑信号的冲动性和周期性,从而对机械故障等脉冲特征具有更强的针对性。FMD通过汉宁窗初始化滤波器组,并利用迭代优化过程(如牛顿拉夫逊算法或灰狼算法)动态调整滤波器参数,有效克服了模态混叠和端点效应问题。该方法在低信噪比条件下仍能保持鲁棒性,已广泛应用于旋转机械故障诊断、生物医学信号分析和语音处理等领域,特别适合提取轴承、齿轮等部件的故障冲击特征。

2025-12-22

ITD:基于MATLAB的固有时间尺度分解(ITD)算法的完整实现

固有时间尺度分解(Intrinsic Time-Scale Decomposition, ITD)是由Frei和Osorio于2007年提出的一种自适应非平稳信号处理方法。与经验模态分解(EMD)相比,ITD通过线性变换而非包络拟合来提取信号的基线分量和固有旋转分量,有效克服了EMD的模态混叠和端点效应问题,并显著提高了计算效率。ITD能够将复杂信号分解为一系列具有物理意义的固有旋转分量(PR)和一个代表趋势项的单调残余分量,每个PR分量都满足瞬时频率的物理意义要求。该方法在机械故障诊断、生物医学信号分析和通信信号处理等领域展现出强大优势,尤其适合处理非线性、非平稳信号。

2025-12-22

LMD:基于MATLAB的局部均值分解(LMD)算法的完整实现

局部均值分解(Local Mean Decomposition, LMD)是由Jonathan S. Smith于2005年提出的一种自适应非平稳信号处理方法。它能够将复杂信号自适应地分解为一系列具有物理意义的乘积函数(Product Function, PF),每个PF分量由一个包络信号和一个纯调频信号相乘构成,从而直接清晰地提取信号的瞬时幅值和瞬时频率特征。LMD通过滑动平均法计算信号的局部均值函数和包络估计函数,迭代分离出不同时间尺度的振荡模式,其分解过程相比经验模态分解(EMD)更直接,在机械故障诊断、生物医学信号分析等领域有广泛应用。不过,传统LMD也存在端点效应、模态混叠等问题,研究者已提出多种改进方案。

2025-12-22

VMD:基于MATLAB的变分模态分解(VMD)算法的完整实现

变分模态分解(Variational Mode Decomposition, VMD)是一种自适应信号处理方法,由Dragomiretskiy和Zosso于2014年提出。它通过求解约束变分优化问题,将复杂信号非递归地分解为多个具有特定稀疏性的本征模态函数(IMF)。每个IMF在频域上具有有限带宽并围绕一个中心频率,VMD通过交替方向乘子法(ADMM)自适应地确定这些频率。相比传统的经验模态分解(EMD),VMD能有效克服端点效应和模态混叠,具有更坚实的数学理论基础和更强的噪声鲁棒性。VMD已广泛应用于机械故障诊断、生物医学信号处理和金融数据分析等领域。

2025-12-21

EMD:基于MATLAB的经验模态分解(EMD)算法的完整实现

经验模态分解(EMD)是由黄锷(N. E. Huang)等人于1998年提出的一种自适应信号处理方法,特别适用于分析非线性、非平稳信号。其核心思想是将复杂信号分解为有限个本征模态函数(IMF),每个IMF代表信号中不同时间尺度的局部特征振荡模式。与需要预先设定基函数的傅里叶变换和小波变换不同,EMD完全由数据驱动,依据信号自身的局部时间尺度进行分解,因此具有更强的自适应性。EMD已广泛应用于机械故障诊断、生物医学信号处理、地震分析和经济数据预测等多个领域。其基本流程包括通过筛分过程提取IMF,即通过识别信号的局部极值点,拟合上下包络线并迭代计算,直至满足IMF的条件(局部极值点与过零点数目相差不超过一个,且上下包络线均值为零)。

2025-12-21

MEMD:基于MATLAB的多元经验模态分解(MEMD)算法的完整实现

多元经验模态分解(Multivariate Empirical Mode Decomposition, MEMD)是传统EMD算法在多变量信号处理领域的扩展,由Rehman和Mandic于2010年提出。MEMD通过在多维球面上采样方向向量,将多元信号投影到不同方向并进行同步分解,有效解决了传统EMD处理多通道信号时存在的尺度对齐问题。该算法能够自适应地将多元信号分解为一系列多元本征模态函数(IMF),各通道对应的IMF分量在数量和频率尺度上保持严格对齐,便于后续的多元信号分析和处理。MEMD在脑电信号处理、金融时间序列分析、地震数据去噪等多元信号处理领域展现出独特优势,特别适合处理具有通道间关联性的非线性和非平稳信号。

2025-12-21

TVF-EMD:基于MATLAB的时变滤波的经验模态分解(TVF-EMD)算法的完整实现

时变滤波经验模态分解(Time-Varying Filter based Empirical Mode Decomposition, TVF-EMD)是对传统经验模态分解(EMD)的重要改进,由Li等人于2017年提出。该方法通过引入时变滤波器技术,有效解决了传统EMD存在的模态混叠和端点效应问题。TVF-EMD的核心创新在于基于信号的瞬时幅值和频率特性自适应设计局部截止频率,利用非均匀B样条近似构建时变滤波器,实现对信号更加精确的分解。 相比于传统EMD,TVF-EMD具有更好的频率分离性能和更强的噪声鲁棒性,特别是在低采样率条件下仍能保持稳定的分解效果。该方法通过截止频率调整算法处理间歇性问题,并引入带宽标准来保证固有模态函数的物理意义。TVF-EMD完全基于数据驱动,适用于分析各类非线性和非平稳信号,在机械故障诊断、生物医学信号处理、地震分析等领域展现出重要应用价值。

2025-12-21

MVMD:基于MATLAB的多元变分模态分解(MVMD)算法的完整实现

多元变分模态分解(Multivariate Variational Mode Decomposition, MVMD)是传统VMD算法在多变量信号处理领域的扩展,由Rehman和Aftab提出。它通过同步分解多通道信号,有效解决了单变量VMD在处理多元信号时的模态对齐问题。MVMD的核心思想是构建一个约束变分优化问题,寻找一组具有共同中心频率的多元本征模态函数,使得所有模态的估计带宽之和最小化。该算法采用交替方向乘子法(ADMM)​ 进行迭代求解,能够自适应地将多元非平稳信号分解为多个在频域具有紧支特性的模态分量。相比于传统的EMD方法,MVMD具有坚实的数学理论基础、更好的噪声鲁棒性和模态对齐特性,在机械故障诊断、生物医学信号分析和金融时间序列处理等多元信号分析领域展现出重要价值。

2025-12-21

WPD:基于MATLAB的小波包分解(WPD)算法的完整实现

小波包分解(Wavelet Packet Decomposition)是对小波分析的推广和深化,它通过同时分解信号的低频和高频部分,提供了比传统小波分解更精细的频带划分能力。这种方法能根据信号特征自适应地选择最佳基函数,克服了小波分析在高频段频率分辨率较差的局限,在机械故障诊断、生物医学信号分析、图像处理等需要精细时频局部化分析的领域具有广泛应用价值。

2025-12-21

EWT:基于MATLAB的经验小波变换(EWT)算法的完整实现

经验小波变换(Empirical Wavelet Transform,EWT)是Gilles于2013年提出的一种自适应信号处理方法,它巧妙地将经验模态分解(EMD)的自适应特性与小波变换的数学严谨性相结合。EWT的核心思想是根据信号傅里叶谱的特征,自适应地构造一组小波滤波器组,将复杂信号分解为多个具有紧支撑傅里叶谱的本征模态函数(IMF)。与传统的EMD相比,EWT有效克服了模态混叠、过包络和欠包络等问题,同时具备更坚实的数学理论基础和更强的噪声鲁棒性。EWT通过检测信号频谱中的局部极大值来自动确定频带划分边界,然后构建相应的带通滤波器组,实现了对非线性、非平稳信号的高精度分解,已广泛应用于机械故障诊断、生物医学信号处理和金融时间序列分析等领域。

2025-12-21

SSA:基于MATLAB的奇异谱分析(SSA)算法的完整实现

奇异谱分析(SSA)是一种强大的非参数、非线性时间序列分析方法,它基于构造轨迹矩阵和奇异值分解(SVD)来提取信号中的不同成分(如趋势、周期振荡和噪声)。SSA无需预先设定基函数或模型形式,能够自适应地识别时间序列中的复杂结构,对异常值和噪声也具有一定的鲁棒性。其核心步骤包括嵌入构造轨迹矩阵、奇异值分解、分组选择有效成分以及对角平均化重构信号。SSA在气候研究、金融分析、生物医学信号处理等领域有广泛应用,特别适合分析非平稳时间序列。

2025-12-21

CEEMDAN:基于MATLAB的自适应噪声完备集合经验模态分解(CEEMDAN)算法的完整实现

本资源是基于MATLAB的自适应噪声完备集合经验模态分解(CEEMDAN)算法的完整实现,包含详细的代码注释和算法概述。

2025-12-21

快速傅里叶变换(FFT)原理详解:从理论到实践(含代码详解及应用).docx

内容概要:本文详细介绍了快速傅里叶变换(FFT)的原理、算法实现及其在实际中的应用。文章从傅里叶变换的数学基础出发,阐述了离散傅里叶变换(DFT)及其计算复杂度问题,进而引入FFT的核心思想——通过分治策略和旋转因子的周期性、对称性、可约性,将DFT的计算复杂度从O(N²)降低到O(N log₂N)。重点解析了Cooley-Tukey算法中的按时间抽取(DIT)和按频率抽取(DIF)两种FFT实现方式,并深入讲解了蝶形运算这一基本计算单元。文中还提供了递归和迭代两种FFT的Python代码实现,对比了其性能差异,并介绍了逆FFT(IFFT)的实现方法。此外,结合NumPy和SciPy库展示了FFT在音频处理、图像处理和振动信号分析等领域的实际应用,如频谱分析、滤波器设计、信号去噪和故障诊断。最后讨论了FFT的局限性,如频谱泄漏、栅栏效应等,并提出了加窗函数、短时傅里叶变换(STFT)等改进方法。; 适合人群:具备一定数学基础和编程能力,对信号处理、数据分析或相关工程领域感兴趣的初学者和中级开发者,尤其适合从事音频、图像处理或机械故障诊断等方向的技术人员。; 使用场景及目标:①理解FFT背后的数学原理与算法优化机制;②掌握FFT的递归与迭代实现方法,并能编写和调试相关代码;③能够在实际项目中应用FFT进行频域分析、滤波、去噪等操作;④识别FFT的局限性并学会使用STFT等扩展技术应对非平稳信号分析需求; 阅读建议:建议读者结合代码示例逐步实践,运行并修改提供的Python程序以加深对FFT流程的理解,尤其是在蝶形运算、位反转和频谱可视化等关键环节进行调试与观察,同时注意对比自实现FFT与NumPy库函数的结果差异,确保理论与实践紧密结合。

2025-12-16

随机森林算法:基于MATLAB的机器学习算法代码详解(含教学文档及代码)

这是一个在 MATLAB 中实现随机森林分类与回归模型的完整解决方案。代码以机器学习中经典的鸢尾花数据集和汽车数据集为例,系统展示了从数据准备、模型构建、训练预测到性能评估的全流程。 实现主要基于 MATLAB 的两个核心函数:fitcensemble​ 和更专用的 TreeBagger。fitcensemble通过设置 'Method'为 'Bag'并配合决策树模板来构建随机森林,而 TreeBagger则是 MATLAB 为随机森林量身打造的函数,功能更为强大和直接。代码演示了如何使用这两个工具训练分类模型来预测鸢尾花品种,以及训练回归模型来预测汽车油耗。 在模型评估方面,代码提供了全面的分析工具。对于分类问题,计算了准确率并绘制了混淆矩阵;对于回归问题,则计算了均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等关键指标,并绘制了预测值-真实值散点图与残差图。尤为重要的是,代码充分利用了随机森林的内置优势,自动计算并可视化特征重要性和袋外误差(OOB Error),后者为模型性能提供了无偏估计,并可用于确定最优的决策树数量。 此外,解决方案还包含了高级实践部分,演示了如何使用K折交叉验证来更稳健地评估模型性能,以及如何对MinLeafSize(最小叶子节点样本数)和树的数量等关键超参数进行简单的网格搜索与优化,帮助使用者找到最佳模型配置。整套代码结构清晰,注释详细,用户可直接套用并根据自己的数据集修改特征和标签,快速应用于实际的分类或回归任务中。

2025-12-09

机器学习MATLAB强化学习算法代码详解(含说明文档及代码)

这是一个全面的MATLAB强化学习实现指南,涵盖了从基础到高级的主要算法。系统分为三大核心部分,展示了强化学习解决序列决策问题的完整流程。 第一部分详细介绍了基于值的经典表格方法,包括Q-learning和SARSA算法。以网格世界为环境示例,实现了完整的马尔可夫决策过程框架,涵盖ε-greedy探索策略、Q表学习更新、奖励机制设计,并提供了策略可视化和训练曲线分析工具,帮助理解强化学习的核心概念。 第二部分深入讲解了深度强化学习,重点实现深度Q网络(DQN)及其变体。针对连续状态空间问题(如CartPole平衡控制),构建了神经网络函数逼近器,实现了经验回放、目标网络、ε衰减等关键技巧。代码包含Double DQN和Dueling DQN的高级变体,并提供了训练过程监控和智能体性能评估功能。 第三部分介绍了策略梯度方法,包含REINFORCE、Actor-Critic和近端策略优化(PPO)三种先进算法。这部分处理连续动作空间控制问题,演示了如何构建策略网络(Actor)和价值网络(Critic),实现基于梯度的策略优化,并包含优势函数估计、重要性采样和裁剪机制等关键技术。 整个实现从基础概念到前沿技术层层递进,每部分都包含环境建模、算法实现、训练循环、性能评估和可视化分析。代码结构清晰,注释详细,既适合初学者理解强化学习原理,也可作为实际项目开发的模板框架,为游戏AI、机器人控制、自动驾驶等复杂决策问题提供解决方案。

2025-12-09

机器学习MATLAB支持向量机SVM算法代码详解(含说明文档及代码)

这是一个全面的MATLAB支持向量机(SVM)实现指南,系统性地展示了SVM在分类、回归、多类别任务及参数优化中的完整应用流程。内容分为三个主要部分,涵盖了从基础到高级的各个方面。 第一部分是SVM基础实现,展示了二分类问题的完整解决方案。代码演示了如何使用fitcsvm函数实现线性核与RBF核SVM,包括数据生成、标准化处理、模型训练和评估。特别重要的是,这部分详细讲解了参数调优方法,通过网格搜索和交叉验证自动寻找最优的正则化参数C和核参数。此外,还实现了多分类SVM(通过fitcecoc函数使用一对多策略)和支持向量回归(使用fitrsvm函数),并提供了决策边界的可视化功能。 第二部分专注于系统化的模型选择和参数优化。通过定义参数网格(包括不同核函数、正则化参数C、多项式次数、核尺度等),对SVM进行全面的超参数搜索。代码实现了自动化的性能比较,帮助用户选择最适合数据和任务的核函数,并绘制了学习曲线来分析模型在不同训练集规模下的表现,为实际应用中的模型选择提供依据。 第三部分探讨了SVM的高级应用场景,包括处理类别不平衡数据的多种策略(类别权重调整和代价敏感学习)、概率输出SVM的实现(可计算预测概率和绘制ROC曲线),以及简化版的增量学习示例。最后还提供了一个自定义SVM的简化实现,帮助理解SVM的核心数学原理。 这套实现从实际问题出发,提供了完整的解决方案框架,既包含MATLAB工具箱的高效应用,也涉及底层原理的实现,适合从学习研究到工程应用的不同需求。

2025-12-09

机器学习MATLAB神经网络算法代码详解(含说明文档及代码)

这是一个全面的MATLAB神经网络实现指南,涵盖了从基础手动实现到高级工具箱应用的完整流程。内容分为三个主要部分,循序渐进地展示了神经网络在MATLAB中的应用。 第一部分展示了神经网络的手动实现,从零开始构建了一个包含两个隐藏层的全连接网络。代码详细实现了前向传播、反向传播算法,使用了ReLU和Softmax激活函数,并加入了L2正则化防止过拟合。该实现包含了完整的数据预处理(标准化、one-hot编码)、训练循环、批量梯度下降和模型评估流程,特别适合学习神经网络底层原理。 第二部分介绍了MATLAB官方Neural Network Toolbox的使用,这是更高效的实现方式。通过patternnet和fitnet函数,可以快速构建分类和回归神经网络。代码演示了如何配置网络结构、设置训练参数、使用交叉验证,并提供了训练过程可视化工具,包括性能曲线、误差直方图和混淆矩阵。 第三部分专注于卷积神经网络(CNN)的实现,针对图像分类任务。使用Deep Learning Toolbox构建了一个典型的CNN架构,包含卷积层、批归一化层、ReLU激活层、池化层和全连接层。代码以MNIST手写数字识别为例,展示了如何使用trainNetwork函数训练CNN,并提供了模型结构分析和训练过程监控功能。 整套代码结构清晰,注释详细,既适合初学者理解神经网络基本原理,也满足实际项目快速部署的需求。从简单的全连接网络到复杂的卷积网络,用户可以根据具体任务选择合适的方法,为图像识别、模式分类、回归预测等任务提供了完整的解决方案。

2025-12-09

【基于MATLAB的算法复现】Flocking for multi-agent dynamics systems algorithms and theory(自由空间及避障算法)(含原文三种算法)

针对文章提出的三种集群算法进行MATLAB代码复现!!!(含原文) 文章提出的三种算法:两种适用于自由空间,一种用于受限环境下的避障。通过对前两种算法的全面分析,证明第一种算法体现了Reynolds提出的三条集群规则,但通常导致规则性分裂而非集群;而第二和第三种算法均能实现稳定集群。作者引入了基于-lattice结构的集体势函数构造方法,并采用多物种框架建模真实智能体与虚拟智能体之间的相互作用。研究还表明,集群迁移可通过去中心化的对等网络实现,即“集群无需领导者”。文中给出了粒子系统的“通用”集群定义,并通过大量二维和三维仿真实验验证了所提算法的有效性,包括大规模智能体的集群形成、分离/重聚机动以及窄道穿越等复杂行为。 适合人群:控制理论、机器人学、多智能体系统、分布式协调与传感器网络领域的研究人员及研究生;具备一定图论、动力系统与优化背景的工程技术人员。 使用场景及目标:①为移动传感器网络、无人飞行器群协同控制提供可扩展、稳定的分布式集群控制算法;②解决多智能体系统在复杂环境中自主导航、避障与编队保持问题;③深入理解自组织系统中集体行为的涌现机制及其稳定性分析方法。 阅读建议:本文理论性强,涉及代数图论、李雅普诺夫稳定性、势函数设计等概念,建议结合仿真结果逐步理解算法设计思路与数学推导过程,重点关注-lattice结构、集体势函数构建及LaSalle不变性原理在集群稳定性分析中的应用。

2025-12-04

【基于MATLAB的算法复现】Consensus problems in networks of agents with switching topology and time-delays

程序复现原文图6、图7过程!!! 文章研究了具有切换拓扑和时滞的多智能体网络中的共识问题,重点分析了三种情况:固定拓扑的有向网络、切换拓扑的有向网络以及带有时滞的无向网络。文章提出了适用于不同场景的共识协议,并利用代数图论、矩阵理论和控制理论工具对协议收敛性进行了系统分析。作者引入“镜像图”概念,将无向图的代数连通性推广到有向图,并证明平衡图在解决平均共识问题中的关键作用。此外,建立了共识性能(收敛速度)与网络代数连通性之间的直接联系,并揭示了系统鲁棒性与时滞容忍能力之间的权衡关系。; 适合人群:具备控制理论、图论或分布式系统基础知识的研究生、科研人员及工程技术人员;尤其适合从事多智能体协同控制、网络化系统分析等方向的研究者。; 使用场景及目标:① 理解多智能体系统中一致性协议的设计原理与收敛机制;② 掌握切换拓扑及时滞因素对网络共识性能的影响;③ 利用代数图论方法分析动态网络的稳定性与收敛速度;④ 为设计高效、鲁棒的分布式协调算法提供理论支持。; 阅读建议:建议结合线性系统理论、矩阵分析和图论基础进行深入研读,重点关注文中提出的Lyapunov函数构造方法、镜像图定义及其在性能分析中的应用。可通过复现仿真案例加深对理论结果的理解。

2025-12-04

LabVIEW构建TCP服务器端(TCP Server)

目标:基于LabVIEW构建TCP Server,以模拟“TCP/UDP网络调试助手”软件部分功能,实现TCP服务器网络的创建及与TCP客户端的双向通讯。 详细说明可参考同名CSDN博客:【LabVIEW】构建TCP服务器端(TCP Server)。

2025-12-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除