【电磁场】矢量分析与场论基础2

矢量分析与场论基础2

更多请见:矢量分析与场论基础1矢量分析与场论基础3

3、梯度(标量场)

  • 方向导数 = 梯度 × \times × 方向矢量
    P 0 P_0 P0沿方向 e l → \overrightarrow{e_l} el 的变化率(方向导数): ∂ f ∂ l ∣ P 0 = lim ⁡ Δ l → 0 Δ f Δ l \left.{\frac{{\partial f}}{{\partial l}}} \right|_{P_0} = \lim_{\Delta l \to 0}{\frac{\Delta f}{\Delta l}} lf P0=limΔl0ΔlΔf
    ∂ f ∂ l = G → ⋅ e l → = ( ∂ f ∂ x e x → + ∂ f ∂ y e y → + ∂ f ∂ z e z → ) ⋅ ( ∂ x ∂ l e x → + ∂ y ∂ l e y → + ∂ z ∂ l e z → ) = ( ∂ f ∂ x e x → + ∂ f ∂ y e y → + ∂ f ∂ z e z → ) ⋅ e l → \frac{\partial f}{\partial l} = \overrightarrow{G} · \overrightarrow{e_l} = (\frac{\partial f}{\partial x} \overrightarrow{e_x} + \frac{\partial f}{\partial y} \overrightarrow{e_y} + \frac{\partial f}{\partial z} \overrightarrow{e_z}) · (\frac{\partial x}{\partial l} \overrightarrow{e_x} + \frac{\partial y}{\partial l} \overrightarrow{e_y} + \frac{\partial z}{\partial l} \overrightarrow{e_z}) = (\frac{\partial f}{\partial x} \overrightarrow{e_x} + \frac{\partial f}{\partial y} \overrightarrow{e_y} + \frac{\partial f}{\partial z} \overrightarrow{e_z}) · \overrightarrow{e_l} lf=G el =(xfex +yfey +zfez )lxex +lyey +lzez )=(xfex +yfey +zfez )el
  • 梯度: g r a d   f = G → = ∇ f = ∂ f ∂ x e x → + ∂ f ∂ y e y → + ∂ f ∂ z e z → grad\:f = \overrightarrow{G} = \nabla f = \frac{\partial f}{\partial x} \overrightarrow{e_x} + \frac{\partial f}{\partial y} \overrightarrow{e_y} + \frac{\partial f}{\partial z} \overrightarrow{e_z} gradf=G =f=xfex +yfey +zfez
    • 梯度指向高点!!!负梯度指向最小!!!
  • 哈密顿算子: ∇ \nabla
    • 直角: ∇ = ∂ ∂ x e x → + ∂ ∂ y e y → + ∂ ∂ z e z → \nabla = \frac{\partial}{\partial x} \overrightarrow{e_x} + \frac{\partial }{\partial y} \overrightarrow{e_y} + \frac{\partial}{\partial z} \overrightarrow{e_z} =xex +yey +zez
    • 柱: ∇ = ∂ ∂ ρ e ρ → + ∂ ρ ∂ ϕ e ϕ → + ∂ ∂ z e z → \nabla = \frac{\partial}{\partial \rho} \overrightarrow{e_\rho} + \frac{\partial }{\rho \partial \phi} \overrightarrow{e_\phi} + \frac{\partial}{\partial z} \overrightarrow{e_z} =ρeρ +ρϕeϕ +zez
    • 球: ∇ = ∂ ∂ r e r → + ∂ r sin ⁡ θ ∂ ϕ e ϕ → + ∂ r ∂ θ e θ → \nabla = \frac{\partial}{\partial r} \overrightarrow{e_r} + \frac{\partial }{r \sin{\theta} \partial \phi} \overrightarrow{e_\phi} + \frac{\partial}{r \partial \theta} \overrightarrow{e_\theta} =rer +rsinθϕeϕ +rθeθ

4、散度(矢量场)

  • 通量

ψ = ∮ S A → ⋅ d S → \psi = \oint_{S}^{} \overrightarrow{A} · d\overrightarrow{S} ψ=SA dS

  • 散度(通量体密度)(通量源)

d i v A → = ∇ ⋅ A → = lim ⁡ Δ V → 0 ∮ S A → ⋅ d S → Δ V = ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z (直角) div \overrightarrow{A} = \nabla·\overrightarrow{A} = \lim_{\Delta V \to 0} \frac{\oint_{S}^{} \overrightarrow{A} · d\overrightarrow{S}}{\Delta V} = \frac{\partial{A_x}}{\partial{x}} + \frac{\partial{A_y}}{\partial{y}} + \frac{\partial{A_z}}{\partial{z}}(直角) divA =A =ΔV0limΔVSA dS =xAx+yAy+zAz(直角)

\qquad 直角: ∇ ⋅ A → = ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z \nabla·\overrightarrow{A} = \frac{\partial{A_x}}{\partial{x}} + \frac{\partial{A_y}}{\partial{y}} + \frac{\partial{A_z}}{\partial{z}} A =xAx+yAy+zAz
\qquad 柱: ∇ ⋅ A → = 1 ρ ∂ ( ρ A ρ ) ∂ ρ + 1 ρ ∂ A ϕ ∂ ϕ + ∂ A z ∂ z \nabla·\overrightarrow{A} = \frac{1}{\rho} \frac{\partial{(\rho A_\rho)}}{\partial{\rho}} + \frac{1}{\rho} \frac{\partial{A_\phi}}{\partial{\phi}} + \frac{\partial{A_z}}{\partial{z}} A =ρ1ρ(ρAρ)+ρ1ϕAϕ+zAz
\qquad 球: ∇ ⋅ A → = 1 r 2 ∂ ( r 2 A r ) ∂ r + 1 r sin ⁡ θ ∂ A ϕ ∂ ϕ + 1 r sin ⁡ θ ∂ ( sin ⁡ θ A θ ) ∂ θ \nabla·\overrightarrow{A} = \frac{1}{r^2} \frac{\partial{(r^2 A_r)}}{\partial{r}} + \frac{1}{r\sin{\theta}} \frac{\partial{A_\phi}}{\partial{\phi}} + \frac{1}{r\sin{\theta}} \frac{\partial{(\sin{\theta} A_\theta)}}{\partial{\theta}} A =r21r(r2Ar)+rsinθ1ϕAϕ+rsinθ1θ(sinθAθ)

\qquad 柱坐标系下散度公式推导:

\qquad 可知:
\qquad ∇ ⋅ A → = ( ∂ ∂ ρ e ρ → + ∂ ρ ∂ ϕ e ϕ → + ∂ ∂ z e z → ) ⋅ ( A ρ e ρ → + A ϕ e ϕ → + A z e z → ) \nabla·\overrightarrow{A} = (\frac{\partial}{\partial \rho} \overrightarrow{e_\rho} + \frac{\partial }{\rho \partial \phi} \overrightarrow{e_\phi} + \frac{\partial}{\partial z} \overrightarrow{e_z})·({A_\rho}\overrightarrow{e_\rho} + {A_\phi}\overrightarrow{e_\phi} + {A_z}\overrightarrow{e_z}) A =(ρeρ +ρϕeϕ +zez )(Aρeρ +Aϕeϕ +Azez )
\qquad e ρ → = e x → cos ⁡ ( ϕ ) + e y → sin ⁡ ( ϕ ) 、 e ϕ → = − e x → sin ⁡ ( ϕ ) + e y → cos ⁡ ( ϕ ) \overrightarrow{e_\rho} = \overrightarrow{e_x} \cos(\phi) + \overrightarrow{e_y} \sin(\phi)、\overrightarrow{e_\phi} = -\overrightarrow{e_x} \sin(\phi) + \overrightarrow{e_y} \cos(\phi) eρ =ex cos(ϕ)+ey sin(ϕ)eϕ =ex sin(ϕ)+ey cos(ϕ)
\qquad 发现:
\qquad ∂ e ρ → ∂ ϕ = e ϕ → 、 ∂ e ϕ → ∂ ϕ = − e ρ → \frac{\partial \overrightarrow{e_\rho}}{\partial \phi} = \overrightarrow{e_\phi}、\frac{\partial \overrightarrow{e_\phi}}{\partial \phi} = -\overrightarrow{e_\rho} ϕeρ =eϕ ϕeϕ =eρ
\qquad 进而:
\qquad ∇ ⋅ A → = ( ∂ ∂ ρ e ρ → + ∂ ρ ∂ ϕ e ϕ → + ∂ ∂ z e z → ) ⋅ A ρ e ρ → + ( ∂ ∂ ρ e ρ → + ∂ ρ ∂ ϕ e ϕ → + ∂ ∂ z e z → ) ⋅ A ϕ e ϕ → + ( ∂ ∂ ρ e ρ → + ∂ ρ ∂ ϕ e ϕ → + ∂ ∂ z e z → ) ⋅ A z e z → \nabla·\overrightarrow{A} = (\frac{\partial}{\partial \rho} \overrightarrow{e_\rho} + \frac{\partial }{\rho \partial \phi} \overrightarrow{e_\phi} + \frac{\partial}{\partial z} \overrightarrow{e_z})·{A_\rho}\overrightarrow{e_\rho} + (\frac{\partial}{\partial \rho} \overrightarrow{e_\rho} + \frac{\partial }{\rho \partial \phi} \overrightarrow{e_\phi} + \frac{\partial}{\partial z} \overrightarrow{e_z})·{A_\phi}\overrightarrow{e_\phi} + (\frac{\partial}{\partial \rho} \overrightarrow{e_\rho} + \frac{\partial }{\rho \partial \phi} \overrightarrow{e_\phi} + \frac{\partial}{\partial z} \overrightarrow{e_z})·{A_z}\overrightarrow{e_z} A =(ρeρ +ρϕeϕ +zez )Aρeρ +(ρeρ +ρϕeϕ +zez )Aϕeϕ +(ρeρ +ρϕeϕ +zez )Azez
\qquad 其中:
\qquad ( ∂ ∂ ρ e ρ → + ∂ ρ ∂ ϕ e ϕ → + ∂ ∂ z e z → ) ⋅ A ρ e ρ → = ∂ ( A ρ e ρ → ) ∂ ρ e ρ → + ∂ ( A ρ e ρ → ) ρ ∂ ϕ e ϕ → = [ ∂ ( A ρ ) ∂ ρ e ρ → ⋅ e ρ → + ∂ ( e ρ → ) ∂ ρ A ρ ⋅ e ρ → ] + [ ∂ ( A ρ ) ρ ∂ ϕ e ρ → ⋅ e ϕ → + ∂ ( e ρ → ) ρ ∂ ϕ A ρ ⋅ e ϕ → ] = ∂ ( A ρ ) ∂ ρ e ρ → ⋅ e ρ → + ∂ ( e ρ → ) ρ ∂ ϕ A ρ ⋅ e ϕ → = ∂ A ρ ∂ ρ + A ρ ρ = 1 ρ ∂ ( ρ A ρ ) ∂ ρ (\frac{\partial}{\partial \rho} \overrightarrow{e_\rho} + \frac{\partial }{\rho \partial \phi} \overrightarrow{e_\phi} + \frac{\partial}{\partial z} \overrightarrow{e_z})·{A_\rho}\overrightarrow{e_\rho} = \frac{\partial({A_\rho}\overrightarrow{e_\rho})}{\partial \rho} \overrightarrow{e_\rho} + \frac{\partial({A_\rho}\overrightarrow{e_\rho}) }{\rho \partial \phi} \overrightarrow{e_\phi} = [\frac{\partial({A_\rho})}{\partial \rho} \overrightarrow{e_\rho} ·\overrightarrow{e_\rho} + \frac{\partial(\overrightarrow{e_\rho})}{\partial \rho} {A_\rho} ·\overrightarrow{e_\rho}] + [\frac{\partial({A_\rho}) }{\rho \partial \phi}\overrightarrow{e_\rho}· \overrightarrow{e_\phi} + \frac{\partial(\overrightarrow{e_\rho}) }{\rho \partial \phi} {A_\rho}· \overrightarrow{e_\phi}] = \frac{\partial({A_\rho})}{\partial \rho} \overrightarrow{e_\rho} ·\overrightarrow{e_\rho} + \frac{\partial(\overrightarrow{e_\rho}) }{\rho \partial \phi} {A_\rho}· \overrightarrow{e_\phi} = \frac{\partial{A_\rho}}{\partial \rho} + \frac{A_\rho}{\rho} = \frac{1}{\rho} \frac{\partial(\rho A_\rho)}{\partial \rho} (ρeρ +ρϕeϕ +zez )Aρeρ =ρ(Aρeρ )eρ +ρϕ(Aρeρ )eϕ =[ρ(Aρ)eρ eρ +ρ(eρ )Aρeρ ]+[ρϕ(Aρ)eρ eϕ +ρϕ(eρ )Aρeϕ ]=ρ(Aρ)eρ eρ +ρϕ(eρ )Aρeϕ =ρAρ+ρAρ=ρ1ρ(ρAρ)
\qquad 其他同理可得!

  • 散度定理(Gauss 定理)

∮ S A → ⋅ d S → = ∫ V ∇ ⋅ A → d V \oint_{S}^{} \overrightarrow{A} · d\overrightarrow{S} = \int_{V}^{} \nabla·\overrightarrow{A} dV SA dS =VA dV

\qquad 容易理解,散度即为通量体密度,故通量为散度对体积的积分

  • 拉普拉斯算子: ∇ 2 \nabla^2 2

∇ 2 f = ∇ ⋅ ( ∇ f ) \nabla^2 f = \nabla·(\nabla f) 2f=(f)

\qquad 对梯度作散度运算,直角: ∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} 2f=x22f+y22f+z22f

  • 格林公式

\qquad ψ 、 φ \psi、\varphi ψφ是具有二阶连续导数的标量函数,令矢量 A → = ψ ∇ φ \overrightarrow{A} = \psi \nabla \varphi A =ψφ,运用散度定理得到格林第一公式

∮ S ( ψ ∇ φ ) ⋅ d S → = ∫ V ( ψ ∇ 2 φ + ∇ ψ ⋅ ∇ φ ) d V \oint_{S}^{} (\psi \nabla \varphi) · d \overrightarrow{S} = \int_{V}^{} (\psi \nabla^2 \varphi + \nabla \psi · \nabla \varphi) dV S(ψφ)dS =V(ψ2φ+ψφ)dV

\qquad 令矢量 B → = φ ∇ ψ \overrightarrow{B} = \varphi \nabla \psi B =φψ,两者第一格林公式相减可得格林第二公式

∮ S ( ψ ∇ φ − φ ∇ ψ ) ⋅ d S → = ∫ V ( ψ ∇ 2 φ − φ ∇ 2 ψ ) d V \oint_{S}^{} (\psi \nabla \varphi - \varphi \nabla \psi) · d \overrightarrow{S} = \int_{V}^{} (\psi \nabla^2 \varphi - \varphi \nabla^2 \psi) dV S(ψφφψ)dS =V(ψ2φφ2ψ)dV

\qquad 格林公式把标量函数的不同微分的不同重积分联系起来了

5、旋度(矢量场)

  • 环量

Γ = ∮ l A → ⋅ d l → \varGamma = \oint_{l}^{} \overrightarrow{A} · d\overrightarrow{l} Γ=lA dl

  • 旋度(最大 环量体密度)(旋涡源)

r o t A → = ∇ × A → = e n → lim ⁡ Δ S → 0 [ ∮ l A → ⋅ d l → Δ S ] ∣ m a x = ∣ e x → e y → e z → ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z ∣ ( 直角 ) rot \overrightarrow{A} = \nabla \times \overrightarrow{A} = \overrightarrow{e_n} \lim_{\Delta S \to 0} \left[\frac{\oint_{l}^{} \overrightarrow{A} · d\overrightarrow{l}}{\Delta S} \right] \Bigg \vert_{max} = {\begin{vmatrix} \overrightarrow{e_x} & \overrightarrow{e_y} & \overrightarrow{e_z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ A_x & A_y & A_z \end{vmatrix}}(直角) rotA =×A =en ΔS0lim ΔSlA dl max= ex xAxey yAyez zAz (直角)

  • 散度定理(Stokes 定理)

∮ l A → ⋅ d l → = ∫ S ( ∇ × A → ) ⋅ d S → \oint_{l}^{} \overrightarrow{A} · d\overrightarrow{l} = \int_{S}^{} (\nabla \times \overrightarrow{A})· d\overrightarrow{S} lA dl =S(×A )dS

\qquad 容易理解,旋度即为环量密度,故环量为旋度对面积的积分

  • 8
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值