题目描述
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。
示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。
分析
代码
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length();
int n = text2.length();
int [][]dp = new int[m+1][n+1];
for(int i = 1; i <= m;i++) {
char c1 = text1.charAt(i - 1);
for(int j = 1; j <= n;j++) {
char c2 = text2.charAt(j - 1);
if(c1 == c2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m][n];
}
如果需要输出最长子序列:
import java.util.*;
public class Solution {
/**
* longest common subsequence
* @param s1 string字符串 the string
* @param s2 string字符串 the string
* @return string字符串
*/
public String LCS (String s1, String s2) {
int len1 = s1.length();
int len2 = s2.length();
if(len1 == 0 || len2 == 0)
return "-1";
int[][] dp = new int[len1+1][len2+1];
for(int i = 0; i < len1+1; i++){
for(int j = 0; j < len2+1; j++){
//初始化行列第一个元素
if(i == 0 || j == 0){
dp[i][j] = 0;
continue;
}
if(s1.charAt(i-1) == s2.charAt(j-1)){
dp[i][j] = dp[i-1][j-1]+1;
}else{
dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
}
}
}
//找出一个最长的公共子序列
StringBuilder sb = new StringBuilder();
int s1L = len1, s2L = len2;
while(s1L != 0 && s2L != 0){
if (s1.charAt(s1L-1) == s2.charAt(s2L-1)){
sb.append(s1.charAt(s1L - 1));
s1L--;
s2L--;
}else{
if (dp[s1L-1][s2L] > dp[s1L][s2L-1]){
s1L--;
}else{
s2L--;
}
}
}
if(sb.length() == 0)
return "-1";
return sb.reverse().toString();
}
}
题目描述
编写一个函数来查找字符串数组中的最长公共前缀。
如果不存在公共前缀,返回空字符串 “”。
示例 1:
输入:strs = [“flower”,“flow”,“flight”]
输出:“fl”
示例 2:
输入:strs = [“dog”,“racecar”,“car”]
输出:""
解释:输入不存在公共前缀。
分析
当字符串数组长度为 0 时则公共前缀为空,直接返回
令最长公共前缀 ans 的值为第一个字符串,进行初始化
遍历后面的字符串,依次将其与 ans 进行比较,两两找出公共前缀,最终结果即为最长公共前缀
如果查找过程中出现了 ans 为空的情况,则公共前缀不存在直接返回
时间复杂度:O(s)O(s),s 为所有字符串的长度之和
代码
class Solution {
public String longestCommonPrefix(String[] strs) {
if(strs.length == 0)
return "";
String ans = strs[0];
for(int i =1;i<strs.length;i++) {
int j=0;
for(;j<ans.length() && j < strs[i].length();j++) {
if(ans.charAt(j) != strs[i].charAt(j))
break;
}
ans = ans.substring(0, j);
if(ans.equals(""))
return ans;
}
return ans;
}
}