背包问题 V2
李陶冶 (命题人)
基准时间限制:1 秒 空间限制:131072 KB 分值: 40
有N种物品,每种物品的数量为C1,C2......Cn。从中任选若干件放在容量为W的背包里,每种物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数)。求背包能够容纳的最大价值。
Input
第1行,2个整数,N和W中间用空格隔开。N为物品的种类,W为背包的容量。(1 <= N <= 100,1 <= W <= 50000)
第2 - N + 1行,每行3个整数,Wi,Pi和Ci分别是物品体积、价值和数量。(1 <= Wi, Pi <= 10000, 1 <= Ci <= 200)
Output
输出可以容纳的最大价值。
Input示例
3 6
2 2 5
3 3 8
1 4 1
Output示例
9
01背包问题:
https://blog.csdn.net/qq_42217376/article/details/81251686
多重背包就是限制了每种物品的个数:
如果我们把种物品都分解成n中物品,那么这不就和01背包解法一样了吗?
代码(TLE):
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
using namespace std;
int c[20001],v[20001],p[105],dp[50005];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
scanf("%d%d%d",&c[i],&v[i],&p[i]);
int k=n+1;
//每个物品的个数当成p种物品
for(int i=1;i<=n;i++)
{
while(p[i]!=1)
{
c[k]=c[i];
v[k]=v[i];
k++;
p[i]--;
}
}
for(int i=1;i<k;i++)
{
for(int j=m;j>=c[i];j--)
dp[j]=max(dp[j],dp[j-c[i]]+v[i]);
}
printf("%d\n",dp[m]);
}
return 0;
}
复杂度O(nmp)
看到很多博客上面有另外一种分解方法,二进制分解
AC代码:
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
using namespace std;
int c[20001],v[20001],dp[50005];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
int x=1;
memset(dp,0,sizeof(dp));
while(n--)
{
int c1,v1,p;
scanf("%d%d%d",&c1,&v1,&p);
for(int i=1;i<=p;i<<=1)
{
c[x]=i*c1;
v[x]=i*v1;
x++;
p-=i;
}
if(p>0)
{
c[x]=p*c1;
v[x]=p*v1;
x++;
}
}
for(int i=1;i<x;i++)
{
for(int j=m;j>=c[i];j--)
dp[j]=max(dp[j],dp[j-c[i]]+v[i]);
}
printf("%d\n",dp[m]);
}
return 0;
}
在背包九讲中截了解释,我觉得我有点说不清楚,大家自行感受。