2020/12/03 05-机器学习逻辑回归算法实现与应用2

决策模型在学习中有一个重要的因素损失函数(并不是每一个公式都可以拿最小二乘法解)

线性回归除了做预测还可以做分类,比如鸢尾花数据

在这里插入图片描述
这个算法是用了sklearn
在这里插入图片描述
定义一个线性回归的对象,然后把数据放进去开始训练,得到斜率和结局
在这里插入图片描述
这是预测

在这里插入图片描述
所以线性回归还可以做分类

在这里插入图片描述
现在采用统一分布(uniform)的方式取随机值(random)low最小值10000,最高值100000,size取多少个数据
在这里插入图片描述
线性回归可以做分类,但是先天不足,因为先天的假设就是数据就是尽可能靠拢

现在想得到一个分类,都是1,形状是50长的数组,int32的数组,这类数据就是1万到10万之间的

在这里插入图片描述
现在产生第二类数据,数据全是0,值从0到3万
在这里插入图片描述
这两类样本想要合并成一类样本,hstack(水平stack),把两个数据横列在一起,y也一样
在这里插入图片描述
在这里插入图片描述
把坐标轴放大点

在这里插入图片描述
这样分类的正确率也能达到60,70%

在这里插入图片描述
这样就能看到其中的问题
1:传统的线性回归输出不适合分类判定;
围绕分类,对线性回归改造它的输出值,其实概率大于50%,就有理由认为是100%
2:分类上逻辑存在缺陷
假设1:线性假设,因为先天的假设就是数据就是尽可能靠拢
假设2:真实值存在误差,误差是独立,epsilon是动态分布的,整个假设建立在误差上,误差是独立的。
假设3:误差服从正态分布

在这里插入图片描述
这里的假设是有缺陷的,所以对分类逻辑要重新设计:(任何分类都需要正面因素(就是概率)+负面因素)

从概率方面重新设计,还需要改造线性回归的输出怎么样不是一个完全的线性,把线性回归的输出值统一做一个规则化,规则成概率,然后概率的方式看输出值。变成一个正因素和负因素的逻辑推理,以整个推理的方式来照道函数的概率,再找到损失函数,再找到最小求解,这个值就是可靠的

线性回归只考虑单一输出值,不足以作为分类的标准。逻辑回归是在线性回归的基础上改造
在这里插入图片描述
重做模型就是为了分类而重做。
逻辑回归改造线性回归,是把线性回归只限制在0和1,分类模型一定是概率模型

在这里插入图片描述
模型重构的过程:
存在一个函数把任意值映射到0-1之间,就是S曲线函数:

在这里插入图片描述
dfrac分数分母1,分子1+e^(-1指数)
在这里插入图片描述
这个模型就是s曲线函数,x等于0,或是x无穷大,它的值都在0和1之间
在这里插入图片描述
可以写程序,把这个画出来
x的坐标等于,np,产生一个连续的数linespace(-10到10之间,产生个数100个,数据是浮点数,float32位)
y的坐标就是上面的

在这里插入图片描述
在这里插入图片描述
数据再狠一点

在这里插入图片描述

这条曲线有良好的性质,在0的时候就是x的直线,导数可以自增的表示
在这里插入图片描述
任何的样本,再之后的任何决策模型,都可以加上一句话,s(x权重),包含结局。就把之前下线性回归之上做了修正,这样y和x之间就不是一个线性,但是把这个模型称为广义的线性回归模型中的分支
在这里插入图片描述
s不管怎么算都改变不了后面的线性结局

在这里插入图片描述

但是,是不是这个概率,就要正反两个因素重构回归模型来决定,如何从正因素还是负因素来做推理

现在认为x的数据受某种因素影响是为A类的,判断其他因素可能是B类,这两种运算就得到两个值
在这里插入图片描述
这是从似然函数到损失函数怎么来的

y值等于0或1
在这里插入图片描述
想要变成行的概念,使用双斜杠\

在这里插入图片描述
上面A可以是正因素,下面的B是负因素
在这里插入图片描述
写成一个比较严格的表达方式,eqslant相等
在这里插入图片描述
现在从正反两个因素来推导结果

在这里插入图片描述
这样就从正反因素变成了决策模型,就是0和1
在这里插入图片描述
还可以变成这样
在这里插入图片描述
在这里插入图片描述

重新回到线性回归来分析,从概率误差角度来分析,模型建立好后,就要分析误差,快速做两个推导,最终是要把W求出来,这样算出的Y值就是概率模型
在这里插入图片描述
A类 和B类各有误差,两套标准

在这里插入图片描述
**推导出影响xw的因素,正反因素,s的值不起绝对作用,主要是w。epsilon是误差值,从误差角度来看
**
在这里插入图片描述
转换成下面的概念,弥补线性回归分类不足的模型,主要是分类,概率可能性的分类模型,既然是概率分类就不是单纯一个值,而是大于等于,小于多少,建立一个正反两方面的概率模型
在这里插入图片描述

在这里插入图片描述
这样就算出来z大于0
在这里插入图片描述

在这里插入图片描述
就会发现上面的公式回归的线性回归上面
在这里插入图片描述
这样有十足的把握,sw算出来就是概率
在这里插入图片描述
这个模型又回到线性代数模型,叫ze,最终xw,有理由相信它是个概率

在这里插入图片描述
这里的epsilon求出来尽可能小,概率才是最大的

在这里插入图片描述
求w的概率模型,概率=1
在这里插入图片描述
按照刚才的推导,可以做一个转换
在这里插入图片描述
在这里插入图片描述
也可以认为epsilon> -xw,这是一个样本产生的值
在这里插入图片描述
如果这个模式=0 ,那就可以把epsilon变成相反的模型

在这里插入图片描述
假设epsilon服从正态分布
在这里插入图片描述
在这里插入图片描述
误差越小越好
在这里插入图片描述
这个模型在数学里称为PROBIT
在这里插入图片描述
上面的是理想模型,这个模型有个问题,正态分布概率函数,没有一个数学函数可以表达他的概率累积函数,这个公式无解
在这里插入图片描述
为了求解,数学家找了一个非常接近的,sigmoid函数,S曲线函数
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
加上一个系数,
在这里插入图片描述
这样正态分布累积函数和逻辑分布累积函数惊人相似
在这里插入图片描述
因为正态分布没办法求,就只能用分子分母

在这里插入图片描述

在这里插入图片描述
如何让误差越小,概率越大,单样本要变成多样本模型(总体误差越小,概率越高),从概率模型到似然最大函数。
y是1的几率,是0的几率

在这里插入图片描述
采用概率的计算使用二项分布:
在这里插入图片描述
在这里插入图片描述
由于误差,这个y可能是0.几
在这里插入图片描述
多个样本可以写成下面的
在这里插入图片描述
整个概率,就变成多个样本的概率模型,最大似然函数

在这里插入图片描述
这个p(yi)单个样本,把逻辑样本概率乘起来,就属于同一结果的概率模型
在这里插入图片描述
copy下来替换y的模型
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
加个bar区分开
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
方便后面加上1
在这里插入图片描述
最大似然函数

在这里插入图片描述

如果要求最大似然函数的结果,求对数
在这里插入图片描述
概率越大,误差越小,似然函数就是这么来的,w不好求,需要梯度下降
在这里插入图片描述
为了方便可以加上dfrac{1}{m}求平均数
在这里插入图片描述
也有的在前面加符号
在这里插入图片描述
在这里插入图片描述
因为是负数,所以是求最小值,这就是机器学习里逻辑回归鼎鼎大名的损失函数
在这里插入图片描述

在机器学习里叫交叉熵函数

在这里插入图片描述
真实的结果
在这里插入图片描述
理想算出的结果
在这里插入图片描述
权重
在这里插入图片描述

线性回归是直接算出矩阵,可以求出来,逻辑回归到现在为止还不指望算结果
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值