石头剪刀布是一种简单的博弈。
其中,参与者为参与游戏的两人,策略集为{出石头,出剪刀,出布},受益为游戏的胜负(胜一局收益+1,负一局收益-1)
石头剪刀布的规则很简单:双方决定出手后,同时展示自己的决定(石头或剪刀或布)石头胜剪刀,剪刀胜布,布胜石头。
以下不妨将两位玩家抽象为玩家A和玩家B。
占优策略
双方收益矩阵如下:
当A出布时, B的最佳应对为剪刀。
当A出石头时,B的最佳应对为布。
当A出剪刀时,B的最佳应对为石头。
显然对于B来说,并没有一个严格占优策略。
同理,A也没有一个严格占优策略。
是否存在一个纳什均衡?
当A的策略对B占优时,B都更倾向于改变策略达到平局或优势。同样,B占优时,A都更倾向于改变策略。
所以当任何一方占优时,都不存在纳什均衡。
当A和B平局时,A和B都有一个以对方不改变策略的前提下更好的策略选择,所以在A和B平局的情况下也不存在纳什均衡。
结果
石头剪刀布对游戏双方是相对公平的,双方都无法通过策略达到严格占优或者纳什均衡。
所以玩家双方无法从对收益的理性推理获得策略。
混合策略
对于此类博弈,往往会通过扩大策略集,包括随机性行为的概率,对参与者的行为进行预测。
同样,收益矩阵如下:
对参与者A来说:
设B出石头的概率为x,出剪刀的概率为y,出布的概率为z则A的收益期望为
策略 | 收益期望 |
---|---|
石头 | y-z |
布 | z-x |
剪刀 | x-y |
若y-z最大时:
- y-z>z-x → y+x>2z
- y-z>x-y → 2y>x+z
- x+y+z=1且x,y,z>=0
- 在三维直角坐标系中,解上述不等式得y>x且y>z,即当y最大时,y-z收益期望最大。
z-x或x-y最大时
由y-z的结论同理可知,当z最大时,z-x收益最大,x最大时,x-y收益期望最大
B同理
结论1:当知道对手的选择不同策略的概率时,采用对手策略概率最高的对应策略,收益期望更高
实际 上,曾有统计显示,人们出石头的概率为"35.4%",出布的概率为"29.6%",出剪刀的概率为"35%"。即在一场相互不了解,并排除所有主观条件的石头剪刀布的游戏中,出布应对石头,或出石头应对剪刀的收益期望应高于出剪刀。
均衡
再次对A讨论:
设A采取石头策略的概率为x,采取剪刀策略的概率为y,采取布策略的概率为z。
B采取不同策略的收益期望为:
策略 | 收益 期望 |
---|---|
石头 | y-z |
布 | z-x |
剪刀 | x-y |
根据混合策略的无差异原理,这三个期望应该相等。
解方程组可得x=y=z=1/3.
对称的,可得B的最佳应对也是x=y=z=1/3.
结论2:双方平等概率决定三种策略为石头剪刀布游戏博弈的混合策略纳什均衡。