Leetcode-338. 比特位计数

前言

这是一道涉及位运算的题目,读者对位运算不是很熟悉或者有遗忘的话,可以看一下这篇文章,方便理解。
java位运算详解:https://blog.csdn.net/qq_42265220/article/details/118386893?spm=1001.2014.3001.5501

问题描述

给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。

示例 1:

输入: 2
输出: [0,1,1]

示例 2:

输入: 5
输出: [0,1,1,2,1,2]

进阶:

给出时间复杂度为O(n*sizeof(integer))的解答非常容易。但你可以在线性时间O(n)内用一趟扫描做到吗?
要求算法的空间复杂度为O(n)。
你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中的 __builtin_popcount)来执行此操作。

题目分析

我们最容易想到的办法,肯定还是遍历0到n,利用按位与运算统计每个num中1的个数。

常规题解

  public static int[] countBits(int n) {
        int[] res = new int[n + 1];
        for (int i = 0; i <= n; i++) {
            int tmp = 0;
            int j = i;
            while (j != 0) {
                tmp += j & 1;
                j = j >> 1;
            }
            res[i] = tmp;
            tmp = 0;
        }
        return res;
    }

高级题解

有个更为神奇、优雅的做法,那就是根据奇偶性遍历计算。
奇数:二进制表示中,奇数一定比前面那个偶数多一个 1,因为多的就是最低位的 1。

举例:
0 = 0 , 1 = 1
2 = 10 , 3 = 11

偶数:二进制表示中,偶数中 1 的个数一定和除以 2 之后的那个数一样多。因为最低位是 0,除以 2 就是右移一位,也就是把那个 0 抹掉而已,所以 1 的个数是不变的。

举例:
2 = 10 , 4 = 100 , 8 = 1000
3 = 11 , 6 = 110 , 12 = 1100

另外,0的1个数为0,于是就可以根据奇偶性开始遍历计算了。

    public static int[] countBits(int n) {
        int[] result = new int[n + 1];
        for(int i = 1; i <= n; i++){
            if ((i & 1) == 0){
                result[i] = result[i >> 1];
            }else {
                result[i] = result[i - 1] + 1;
            }
        }
        return result;
    }

参考

https://leetcode-cn.com/problems/counting-bits/solution/hen-qing-xi-de-si-lu-by-duadua/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值