前言
这是一道涉及位运算的题目,读者对位运算不是很熟悉或者有遗忘的话,可以看一下这篇文章,方便理解。
java位运算详解:https://blog.csdn.net/qq_42265220/article/details/118386893?spm=1001.2014.3001.5501
问题描述
给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。
示例 1:
输入: 2
输出: [0,1,1]
示例 2:
输入: 5
输出: [0,1,1,2,1,2]
进阶:
给出时间复杂度为O(n*sizeof(integer))的解答非常容易。但你可以在线性时间O(n)内用一趟扫描做到吗?
要求算法的空间复杂度为O(n)。
你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中的 __builtin_popcount)来执行此操作。
题目分析
我们最容易想到的办法,肯定还是遍历0到n,利用按位与运算统计每个num中1的个数。
常规题解
public static int[] countBits(int n) {
int[] res = new int[n + 1];
for (int i = 0; i <= n; i++) {
int tmp = 0;
int j = i;
while (j != 0) {
tmp += j & 1;
j = j >> 1;
}
res[i] = tmp;
tmp = 0;
}
return res;
}
高级题解
有个更为神奇、优雅的做法,那就是根据奇偶性遍历计算。
奇数:二进制表示中,奇数一定比前面那个偶数多一个 1,因为多的就是最低位的 1。
举例:
0 = 0 , 1 = 1
2 = 10 , 3 = 11
偶数:二进制表示中,偶数中 1 的个数一定和除以 2 之后的那个数一样多。因为最低位是 0,除以 2 就是右移一位,也就是把那个 0 抹掉而已,所以 1 的个数是不变的。
举例:
2 = 10 , 4 = 100 , 8 = 1000
3 = 11 , 6 = 110 , 12 = 1100
另外,0的1个数为0,于是就可以根据奇偶性开始遍历计算了。
public static int[] countBits(int n) {
int[] result = new int[n + 1];
for(int i = 1; i <= n; i++){
if ((i & 1) == 0){
result[i] = result[i >> 1];
}else {
result[i] = result[i - 1] + 1;
}
}
return result;
}
参考
https://leetcode-cn.com/problems/counting-bits/solution/hen-qing-xi-de-si-lu-by-duadua/