题干:
There are N light bulbs indexed from 0 to N−1. Initially, all of them are off.
A FLIP operation switches the state of a contiguous subset of bulbs. FLIP(L, R)means to flip all bulbs x such that L<=x <=R. So for example, FLIP(3, 5)means to flip bulbs 3 , 4 and 5, and FLIP(5, 5)means to flip bulb 5.
Given the value of N and a sequence of M flips, count the number of light bulbs that will be on at the end state.
InputFile
The first line of the input gives the number of test cases, T. T test cases follow. Each test case starts with a line containing two integers N and MM, the number of light bulbs and the number of operations, respectively. Then, there are MM more lines, the ii-th of which contains the two integers Li and Ri , indicating that the ii-th operation would like to flip all the bulbs from Li and Ri , inclusive.
1≤T≤1000
1≤N≤
1
0
6
10^6
106
1≤M≤1000
0<=Li<=Ri<=N-1
OutputFile
For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the number of light bulbs that will be on at the end state, as described above.
样例输入
2
10 2
2 6
4 8
6 3
1 1
2 3
3 4
样例输出
Case #1: 4
Case #2: 3
思路:
本题是一个区间修改问题,状态只有0和1,比较容易想到的是后缀和用数组res[i]表示从i到n的所有灯泡变换的次数,使用now表示以变化的次数,每次now+res[i],now%2则表示当前灯泡的状态。
其实这个题可以转换为每次操作对[L,R]的所有数进行+1操作,求最后有多少个奇数。(这就是经典的差分问题了)
y因为本题N的范围是[1,
1
0
6
10^6
106],o(N)的复杂度加上多组输入还是会超时,所以考虑用差分。
然后我们考虑从范围是[1,1000]的M入手,首先存储所有操作->(l,1)(r+1,-1)(r+1是因为右边界本身被触发了一次开关)并按first排序。
用now表示当前的位置,sum表示从now到当前灯泡的开关状态。
例如:6 3
1 1
2 3
3 4
这组数据得到的pair数组为(1,1)(2,-1)(2,1)(3,1)(4.-1)(5,-1)
now=1 2 2 3 4 5
sum=1 0 1 2 1 0
ans= 0 1 1 2 2 3
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
pair<int,int>p[2020];
int main()
{
int t1,t,n,m,l,r;
scanf("%d",&t1);
for(int k=1;k<=t1;k++){
int tot=0;
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++){
scanf("%d%d",&l,&r);
p[tot++]=make_pair(l,1);
p[tot++]=make_pair(r+1,-1);
}
sort(p,p+tot);
int sum=0,now=0,ans=0;
for(int i=0;i<tot;i++){
if(now!=p[i].first){
if(sum&1){
ans+=p[i].first-now;
}
now=p[i].first;
}
sum+=p[i].second;
}
printf("Case #%d: %d\n",k,ans);
}
return 0;
}
//TLE的代码还是放上来了
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int res[1000010];
int main()
{
int t,t1,x,y,n;
scanf("%d",&t1);
for(int k=1;k<=t1;k++){
scanf("%d%d",&n,&t);
for(int i=0;i<=n;i++)
res[i]=0;
while(t--){
scanf("%d%d",&x,&y);
res[x]++;
res[y+1]++;
}
int now=0,ans=0;
for(int i=0;i<n;i++){
now+=res[i];
if(now%2==1)
ans++;
}
printf("Case #%d: %d\n",k,ans);
}
return 0;
}