省赛前整理





在这里插入图片描述

常用函数

二分查找函数:

数组:a,长度:n,查找数:x
upper_bound(a,a+n,x)-a (可以插入的下界,第一个大于等于的)
lower_bound(a,a+n,x)-a (可以插入的上界,第一个大于的)

排列:

头文件:#include< algorithm>
next_permutation(a,a+3) //求数组a中前3个元素的下一个排列
prev_permutation(a,a+3) //求数组a中前3个元素的前一个排列
a可为普通数组,string,vector……

求1-10的第10个排列
a[10]={1,2,3,4,5,6,7,8,9,10};
for(int i=1;i< k;i++)
next_permutation(a,a+10);
for(int i=0;i<10;i++)
cout<< a[i]< < ” “;





java大数:

import java.util.*;
import java.math.*;
public class Main{
    public static void main(String args[]){
       Scanner cin = new Scanner(System.in);
       BigInteger a, b;
       //以文件EOF结束
       while (cin.hasNext()){
           a = cin.nextBigInteger();
           b = cin.nextBigInteger();
           System.out.println(a.add(b)); //大整数加法
           System.out.println(a.subtract(b)); //大整数减法
           System.out.println(a.multiply(b)); //大整数乘法
           System.out.println(a.divide(b)); //大整数除法(取整)
           System.out.println(a.remainder(b)); //大整数取模
           //大整数的比较
           if( a.compareTo(b) == 0 ) System.out.println("a == b"); //大整数a==b
           else if( a.compareTo(b) > 0 ) System.out.println("a > b"); //大整数a>b
           else if( a.compareTo(b) < 0 ) System.out.println("a < b"); //大整数a<b
           //大整数绝对值
           System.out.println(a.abs()); //大整数a的绝对值
           //大整数的幂
           int exponent=10;
           System.out.println(a.pow(exponent)); //大整数a的exponent次幂
           //返回大整数十进制的字符串表示
           System.out.println(a.toString());
           //返回大整数p进制的字符串表示
           int p=8;
           System.out.println(a.toString(p));
       }
    }
}

图论

二分图:

独立集:指一个图中两两不相邻的点构成的集合。
最小顶点覆盖:选择最少的顶点能覆盖所有的边,即从原图中任选一条边,至少有一个顶点属于这个顶点集合。
在二分图中,最大匹配数=最小顶点覆盖数
最大独立集=定点数-最小顶点覆盖数
二分图的最大匹配可以用匈牙利算法求得

bool dfs(int pos)  
{
	for(int i=0;i<n;i++){
		if(a[pos][i]&&vis[i]==0)
		{
			vis[i]=1;
			//printf("%d\n",i);
			if(book[i]==-1||dfs(book[i]))  //搜索是否可以腾位置
			{
				book[i]=pos;
				return true;
			}
		}
	}
	return false;
}
int hungary()  //匈牙利算法
{
	int ans=0;
	memset(book,-1,sizeof(book));
	for(int i=0;i<n;i++){
		memset(vis,0,sizeof(vis));
		if(dfs(i))
			ans++;
	}
	return ans;
}

最短路:

SPFA算法:

struct stu
{
	int v;
	double r,c;
};
vector<stu> x[10000];
void add(int u,int v,double r,double c)
{
	stu t;
	t.c=c;
	t.r=r;
	t.v=v;
	x[u].push_back(t);
}
int n,m,s,vis[10000];
double v1,mi[10000];
void spfa()
{
	for(int i=0;i<=n;i++){
		mi[i]=0;vis[i]=0;
	}
	mi[s]=v1;
	queue<int> q;
	while(!q.empty())  q.pop();
	q.push(s);
	vis[s]=1;
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		vis[u]=0;
		for(int i=0;i<x[u].size();i++){
			int v=x[u][i].v;
			double r=x[u][i].r,c=x[u][i].c;
			if(mi[v]<(mi[u]-c)*r)
			{
				mi[v]=(mi[u]-c)*r;
				if(!vis[v])
				{
					q.push(v);
					vis[v]=1;
				}
			}
			if(mi[s]>v1)   //原 
			{
				printf("YES\n");
				return;
			}
		}
	}
	printf("NO\n");
}
int main()
{
	while(scanf("%d%d%d%lf",&n,&m,&s,&v1)!=EOF)
	{
		for(int i=0;i<=n;i++)
		  x[i].clear();
		for(int i=0;i<m;i++){
			int a,b;
			double c,d,e,f;
			scanf("%d%d%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f);
			add(a,b,c,d);
			add(b,a,e,f);
		}
		spfa();
	}
	return 0;
}

bellman(可以判负环)

int n,m,w,s,e,t,cnt[100000],mi[100000],sum;
bool vis[100000];
struct stu
{
	int cost,u,v;
};
vector<stu> x;
void add(int a,int b,int c)
{
	struct stu t;
	t.u=a;t.v=b;t.cost=c;
	x.push_back(t);
}
void bellman()
{
	for(int i=0;i<=n;i++)
	   mi[i]=INF;
	mi[1]=0;
	for(int j=1;j<n;j++){
		for(int i=0;i<x.size();i++){
			int u=x[i].u,v=x[i].v,cost=x[i].cost;
			if(mi[v]>mi[u]+cost)
			  mi[v]=mi[u]+cost;
		}
	}
	for(int i=0;i<x.size();i++){
		int u=x[i].u,v=x[i].v,cost=x[i].cost;
		if(mi[v]>mi[u]+cost)
		{
			printf("YES\n");
			return; 
		}    
	}
	printf("NO\n");
}
int main()
{
	int tt;
	cin>>tt;
	while(tt--)
	{
		int a,b,c;
		x.clear();
		scanf("%d%d%d",&n,&m,&w);
		for(int i=0;i<m;i++){
			scanf("%d%d%d",&a,&b,&c);
			add(a,b,c);
			add(b,a,c);
		}
		for(int i=0;i<w;i++){
			scanf("%d%d%d",&a,&b,&c);
			add(a,b,-c);
		}
		bellman();
	}
	return 0;
} 

Dijkstra算法:

int t,n,map[2010][2010];
int lc[2010],vis[2010];
void dij()
{
	for(int i=0;i<n;i++){
		vis[i]=0;
		lc[i]=INF;
	}
	lc[0]=0;
	for(int j=0;j<n;j++){
		int mi=INF,k=-1;
		for(int i=0;i<n;i++){
			if(!vis[i]&&mi>lc[i])
			{
				mi=lc[i];
				k=i;
			}
		}
		if(k==-1)   return;
		vis[k]=1;
		for(int i=0;i<n;i++){
			if(!vis[i]&&lc[k]+map[k][i]<lc[i])

			   lc[i]=map[k][i]+lc[k];
		}
	}
}
int main()
{
	int a,b,c;
	cin>>t>>n;
	for(int i=0;i<n;i++)
	   for(int j=0;j<n;j++)
	      map[i][j]=INF;
	for(int k=0;k<t;k++){
		scanf("%d%d%d",&a,&b,&c);
		if(c<map[a-1][b-1])
		{
			map[a-1][b-1]=map[b-1][a-1]=c;
		}
	}
	dij();
	printf("%d\n",lc[n-1]);
	return 0;
}

注意的点:

单元最短路与多元最短路:方向反转是多元变单元

博弈论

尼姆博弈

有任意堆物品,每堆物品的个数是任意的,双方轮流从中取物品,每一次只能从一堆物品中取部分或全部物品,最少取一件,取到最后一件物品的人获胜。
结论:把每堆物品数全部异或起来,如果得到的值为0,那么先手必败,否则先手必胜。

巴什博弈

只有一堆n个物品,两个人轮流从中取物,规定每次最少取一个,最多取m个,最后取光者为胜
若 n%(m+1)==0 后手必胜
否则先手必胜,若n>m,第一次取n%(m+1)个,若n<=m,则第一次可取n~m间任意个

威佐夫博弈

有两堆各若干的物品,两人轮流从其中一堆取至少一件物品,至多不限,或从两堆中同时取相同件物品,规定最后取完者胜利。











数论基础

基础知识:

中位数的性质:所有数与中位数差值的绝对值最小。
海伦公式:s= p ∗ ( p − a ) ∗ ( p − b ) ∗ ( p − c ) \sqrt{p*(p-a)*(p-b)*(p-c)} p(pa)(pb)(pc) 其中(p=(a+b+c)/2)
浮点型误差注意!
n,n-1,n-2两两互质,他们的最小公倍数为他们的乘积。
任意两个大于1的相邻自然数互质。
在这里插入图片描述

乘法逆元

(1)涉及到减法的取模变成 (a-c+mod)%mod
(2)根据费马小定理:当p为质数时候, a ( p − 1 ) a^{(p-1)} a(p1)≡1(mod p)。所以可以变成%mod-1
a ∗ a ( p − 2 ) a*a^{(p-2)} aa(p2)≡1(mod p) 所以a和 a p − 2 a^{p-2} ap2为逆元

long long PowMod(long long a,int b) {
    long long ret=1;
    while(b) {
        if(b&1)ret=ret*a%Mod;
        a=a*a%Mod;
        b>>=1;
    }
    return ret;
}

(3)拓展欧几里得

long long extend_gcd(long long a,long long b,long long &x,long long &y) {
    if(a==0&&b==0)
        return -1ll;
    if(b==0)
    {
        x=1ll;
        y=0ll;
        return a;
    }
    long long d=extend_gcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}
long long mod_reverse(long long a,long long n) {
    long long x,y,d=extend_gcd(a,n,x,y);
    if(d==1) {
        if(x%n<=0)return x%n+n;
        else return x%n;
    } else return -1ll;
}

欧拉函数

含义 : 欧拉函数Φ(n)表示小于n的数于n互质(gcd(x,y)=1,则互质)的个数。
性质:若n为素数,Φ(n)=n-1;
实现

long long ol[mx]; 
void  getol()
{
	memset(ol,0,sizeof(ol));
	ol[1]=1;
	for(long long i=2;i<mx;i++){
		if(!ol[i])
		{
			for(long long j=i;j<mx;j+=i){
				if(!ol[j])
					ol[j]=j;
				ol[j]=ol[j]/i*(i-1);
			}
		}
	}
}

唯一分解定理

含义 :任何一个数,都可以写成若干个素数乘积的形式,即 n= P 1 E 1 P1^{E1} P1E1 * P 2 E 2 P2^{E2} P2E2 * P 3 E 3 P3^{E3} P3E3 P n E n Pn^{En} PnEn.
且该表示形式可以写成唯一的表示。
性质:N的因子的个数=(1+E1) * (1+E2) * (1+E3)…(1+En) (Ei为素数的指数)
gcd(a,b)= p 1 m i n ( a 1 , b 1 ) p1 ^ {min(a1,b1) } p1min(a1,b1)* p 2 m i n ( a 2 , b 2 ) p2 ^ {min(a2,b2) } p2min(a2,b2) p n m i n ( a n , b n ) pn ^ {min(an,bn) } pnmin(an,bn)
lcm(a,b)= p 1 m a x ( a 1 , b 1 ) p1 ^ {max(a1,b1) } p1max(a1,b1)* p 2 m a x ( a 2 , b 2 ) p2 ^ {max(a2,b2) } p2max(a2,b2) p n m a x ( a n , b n ) pn ^ {max(an,bn) } pnmax(an,bn)

欧几里得算法

含义:gck(a,b)为求a,b的最大公约数
性质
实现

int gck(int a,int b)
{
	if(b==0)
	  return a;
	else
	  return gck(b,a%b);
}

扩展欧几里得算法

含义 :求关于x,y的方程 ax + by = gcd(a,b) 的所有整数解
性质
实现

void exgcd(long long a,long long b,long long &d,long long &x,long long &y)
{
	if(!b)
	{
		d=a;
		x=1;
		y=0;
	}
	else
	{
		exgcd(b,a%b,d,y,x);
		y-=x*(a/b);
	}
}

BSGS算法

大步小步算法用于解决:已知A, B, C,求X使得
A^x = B (mod C)
成立。
例题:给定一个素数P, 2<=P< 2 31 2^{31} 231,两个正整数B , 2 <=B<P; N , 1<=N<P;
求一个正整数L,使得 B L ≡ N ( m o d P ) B^L≡N (mod P) BLN(modP)


typedef long long ll;
ll qc(ll a,ll b,ll c)
{
	ll ans=1;
	while(b)
	{
		if(b&1)
			ans=(ans*a)%c;
		a=(a*a)%c;
		b>>=1;
	} 
	return ans%c;
}
ll bsgs(ll a,ll b,ll c)
{
	ll m=ceil(sqrt(c*1.0));
	ll t=qc(a,c-m-1,c),y=1;  //求逆元
	//printf("%lld\n",m);
	map<ll,ll>x;
	x[1]=m;
	for(int i=1;i<m;i++){
		y=(y*a)%c;
		if(!x[y])
			x[y]=i;
	}
	for(int i=0;i<m;i++){
		if(x[b]) //查找map表
		{
			int pos=x[b];
			x.clear();
			return m*i+(pos==m?0:pos);
		}
		b=(b%c*t%c)%c;
	}
	return -1;
}
int main()
{
	ll a,b,c;
	while(scanf("%lld%lld%lld",&c,&a,&b)!=EOF)
	{
		//printf("%lld %lld %lld\n",a,b,c);
		ll ans=bsgs(a,b,c);
		if(ans==-1)
			printf("no solution\n");
		else
			printf("%lld\n",ans);
	}
	return 0;
}


欧拉降幂

含义:对于 A B A^B ABmod C来说,当幂数特别大,需要使B在模C的情况下减小,要使用欧拉降幂。
A B A^B AB mod C= A^(B mod phi(c ) ) mod C …(B<phi(c ))
A B A^B AB mod C= A^(B mod phi(c )+phi(C )) mod C …(B>=phi(c ))
phi(c )为c的欧拉函数

线性筛素数

注意点:当数据为 1 0 6 10^6 106左右时,数组应使用bool型。若数据大于 1 0 7 10^7 107则无法使用
实现

const int mx=1e6+5;
bool f[mx];
int p[mx],num=0;
void f1()
{
	for(int i=2;i<mx;i++){
		if(!f[i])  p[num++]=i;
		for(int j=0;j<num&&i*p[j]<mx;j++){
			f[i*p[j]]=true;
			if(!(i%p[j]))  break;
		}
	}
}

数据结构

优先队列:

默认从大到小排列
普通优先队列:priority_queue< int>q;
从小到大优先队列:priority_queue< int,vector< int>,greater< int> >q;
对结构体应用优先队列:

struct Node
{
    int x,y,val;
    friend bool operator < (node n1,node n2)
    {
            if(n1.val==n2.val)
                return n1.x>n2.x;
        return n1.val<n2.val;    //和正常不同,"<"为从大到小,">"为从小到大
    }
};
priority_queue<node>q

线段树:

const int mx = 110000;
long long tree[4*mx],tr[4*mx],tp[4*mx];  //tr乘标记 tp加标记 
int mod,n; 
void build(int l,int r,int x)
{
	if(l==r)
	{
		scanf("%lld",&tree[x]);
		return;
	}
	tr[x]=1;
	int m=(l+r)>>1;
	build(l,m,x<<1);
	build(m+1,r,(x<<1)+1);
	tree[x]=(tree[x<<1]+tree[(x<<1)+1])%mod;  //push_up
}
void lazy(int l,int r,int x)
{
	int m=(l+r)>>1;
	if(tr[x]!=1)  //乘法时
	{
		tree[2*x]=(tree[2*x]*tr[x])%mod;
		tree[2*x+1]=(tree[2*x+1]*tr[x])%mod;
		if(l!=r)   非单点时
		{
			tr[2*x]=(tr[2*x]*tr[x])%mod;
			tr[2*x+1]=(tr[2*x+1]*tr[x])%mod;
			tp[2*x]=(tp[2*x]*tr[x])%mod;
			tp[2*x+1]=(tp[2*x+1]*tr[x])%mod;
		}
		tr[x]=1;
	}
	if(tp[x])
	{
		tree[2*x]=(tree[2*x]+tp[x]*(m-l+1))%mod;
		tree[2*x+1]=(tree[2*x+1]+tp[x]*(r-m))%mod;
		if(l!=r)
		{
			tp[2*x]=(tp[2*x]+tp[x])%mod;
			tp[2*x+1]=(tp[2*x+1]+tp[x])%mod;
		}
		tp[x]=0;
	}
}
void update(int l,int r,int x,int a,int b,int c,int op)
{
	if(l>=a&&r<=b)
	{
		if(op==1)
		{
			tree[x]=(tree[x]*c)%mod;
			if(l==r)
			  return ;
			tr[x]=(tr[x]*c)%mod;
			tp[x]=(tp[x]*c)%mod;   //乘法时要同时更新加法的懒标记
		}
		else
		{
			tree[x]=(tree[x]+c*(r-l+1))%mod;
			if(l==r)
			  return ;
			tp[x]=(tp[x]+c)%mod;
		}
		return;
	}
	int m=(r+l)>>1;
	lazy(l,r,x);
	if(a<=m)
	  update(l,m,x*2,a,b,c,op);
	if(m+1<=b)
	  update(m+1,r,x*2+1,a,b,c,op);
	tree[x]=(tree[x*2]+tree[x*2+1])%mod;
}
long long query(int l,int r,int x,int a,int b)  //区间查询
{
	if(l>=a&&r<=b)
	   return tree[x];
	int m=(l+r)/2;
	long long ans=0;
	lazy(l,r,x);
	if(a<=m)
		ans+=query(l,m,2*x,a,b);
	if(b>=m+1)
	 	ans+=query(m+1,r,2*x+1,a,b);
	return ans%mod;
}
int main()
{
	int t,m,op,a,b,c;
	scanf("%d%d",&n,&mod);
	memset(tree,0,sizeof(tree));
	build(1,n,1);
	scanf("%d",&m);
	for(int i=0;i<m;i++){
		scanf("%d",&op);
		if(op<3)
		{
			scanf("%d%d%d",&a,&b,&c);
			update(1,n,1,a,b,c,op);
		}
		else
		{
			scanf("%d%d",&a,&b);
			printf("%lld\n",query(1,n,1,a,b));
		}
		
	}
	return 0;
}

并查集:

int fa[N],rank[N];
void init(int n)    //初始化
{
      for(int i=0;i<n;i++)
       {
           fa[i]=i;
            rank[i]=0;
       }
}
int find(int x)
{
       if(fa[x]==x)
          return x;
        else
          return fa[x]=find(fa[x]);           //路径压缩
}
void unite(int x,int y)
{
        x=find(x);
        y=find(y);
        if(x==y) return ;
        if(rank[x]<rank[y])
          fa[x]=y;
        else
        {
          fa[y]=x;
          if(rank[x]==rank[y])
             rank[x]++;
        }
}
bool same(int x,int y)
{
          return find(x)==find(y);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值