numpy基本用法
学习python mooc学习笔记
数据
一维数据
- 一维数据由对等关系的有序或无序数据构成,采用线性方式组织。
- 一维数据:列表和集合类型
- 列表和数组
- 一组数据的有序结构
- 列表:数据类型可以不同
- 数组:数据类型相同
二维数据和多维数据
- 二维数据由多个一维数据构成,是一维数据的组合形式。
- 表格是典型的二维数据
- 多维数据由一维数据或二维数据在新的维度上拓展形成。
- 高维数据仅利用最基本的二元关系展示数据间的复杂结构。比如json
Numpy
NumPy是一个开源的python科学计算基础库。
-
一个强大的N维数组对象ndarray
-
广播功能函数
-
整合c/c++/Fortran代码工具
-
线性代数、傅里叶变换、随机数生成等功能
Numpy的引用:import numpy as np,建议使用np作为numpy的别名。 -
数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据
-
设置专门的数组对象,经过优化,可以提升这类应用的运算速度。
-
数组对象采用相同的数据类型,有助于节省运算和存储空间
N维数组对象:ndarray
ndarray是一个多维数组对象,由两部分构成:
- 实际的数据
- 描述这些数据的元数据(数据维度、数据类型等)
ndarray数组一般要求所有元素相同,数组下标从0开始。
ndarray数组创建
- np.array()生成一个ndarray数组
- np.array()输入成[]形式,元素由空格分割。
- 轴:保存数据的维度;秩:轴的数量
ndarray的元素类型
ndarray数组的创建方法
- 从python中的列表、元组等类型创建ndarray数组
- 使用Numpy中函数创建ndarray数组,如arange,ones,zeros等。
- 从字节流中创建ndarray数组
- 从文件中读取特定格式,创建ndarray数组。
ndarray数组的变换
-
对于创建后的ndarray数组,可以对其进行维度变换和元素类型变换。
-
astype()方法一定回创建新的数组(原始数据的一个拷贝),即使两个类型一致。
ndarray数组向列表转换
- ls = a.tolist()
数组的操作
数组的索引和切片
1、索引:获取数组中特定位置元素的过程。
2、切片:获取数组元素子集的过程。
ndarray的运算
- 数组与标量之间的运算
- 数组与标量之间的运算作用于数组的每一个元素
对ndarray中的数据执行元素级运算的函数
函数 | 说明 |
---|---|
np.abs(x) np.fabs(x) | 计算数组各元素的绝对值 |
np.sqrt(x) | 计算数组各元素的平方根 |
np.square(x) | 计算数组各元素的平方 |
np.log(x) np.log10(x) np.log2(x) | 计算数组各元素的自然对数、10底对数和2底对数 |
np.ceil(x) np.floor(x) | 计算各元素的ceiling值和floor值 |
np.rint(x) | 计算数组各元素的四舍五入值 |
np.modf(x) | 将数组各元素的小数和整数部分以连个独立数组形式返回 |
np.cos(x) np.cosh(x) np.sin(x) np.sinh(x) np.tan(x) np.tanh(x) | 计算数组各元素的普通型和双曲线型三角函数 |
np.exp(x) | 计算数组各元素的指数值 |
np.sign(x) | 计算数组各元素的符号值 |
Numpy二元函数
numpy存储和函数
CSV文件
CSV是一种常见的文件格式,用来存储批量数据,采用逗号分隔。
CSV文件只能有效存储一维或二维数组
np.savetxt(frame,array,fmt='%.18e',delimiter=None)
# frame:文件、字符串或产生器,可以是.gz或.bz2的压缩文件
#array:纯如文件的数组。
#fmt:写入文件的格式,例如%d %.2f %.18e
#delimiter:分割字符串,默认是任何空格。
#dtype:数据类型,可选
#unpack:如果True,读入属性将分别写入不同变量。
np.loadtxt(frame,dtype=np.float,delimiter=None,unpack=False)
多维数据的存取
a.tofile(frame,sep='',format='%s')
#frame:文件或字符串
#sep:数据分割字符串,如果是空串,写入文件为二进制。
#format:写入数据的格式。
#dtype:读取的数据类型。
#count:读入元素个数,-1表示读入整个文件。
#sep:数据分割字符串,如果是空串,写入文件为二进制。
np.fromFile(frame,dtype=float,count=-1,sep='')
NumPy的便捷文件存取
NumPy随机数函数
例子:
NumPy统计函数
例子:
NumPy梯度函数
函数 | 说明 |
---|---|
np.gradient(f) | 计算数组f中元素的梯度,当f为多维时,返回每个维度梯度 |
梯度:连续值之间的变化率,即斜率。
文章参考自MOOC python课程.