numpy基本用法

numpy基本用法

学习python mooc学习笔记


数据

一维数据

  • 一维数据由对等关系的有序或无序数据构成,采用线性方式组织。
  • 一维数据:列表和集合类型
  • 列表和数组
  • 一组数据的有序结构
  • 列表:数据类型可以不同
  • 数组:数据类型相同

二维数据和多维数据

  • 二维数据由多个一维数据构成,是一维数据的组合形式。
  • 表格是典型的二维数据
  • 多维数据由一维数据或二维数据在新的维度上拓展形成。
  • 高维数据仅利用最基本的二元关系展示数据间的复杂结构。比如json

Numpy

NumPy是一个开源的python科学计算基础库。

  • 一个强大的N维数组对象ndarray

  • 广播功能函数

  • 整合c/c++/Fortran代码工具

  • 线性代数、傅里叶变换、随机数生成等功能
    Numpy的引用:import numpy as np,建议使用np作为numpy的别名。

  • 数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据

  • 设置专门的数组对象,经过优化,可以提升这类应用的运算速度。

  • 数组对象采用相同的数据类型,有助于节省运算和存储空间

N维数组对象:ndarray

ndarray是一个多维数组对象,由两部分构成:

  • 实际的数据
  • 描述这些数据的元数据(数据维度、数据类型等)
    ndarray数组一般要求所有元素相同,数组下标从0开始。
ndarray数组创建
  • np.array()生成一个ndarray数组
  • np.array()输入成[]形式,元素由空格分割。
  • 轴:保存数据的维度;秩:轴的数量
    在这里插入图片描述
ndarray的元素类型

在这里插入图片描述

ndarray数组的创建方法
  • 从python中的列表、元组等类型创建ndarray数组
  • 使用Numpy中函数创建ndarray数组,如arange,ones,zeros等。
  • 从字节流中创建ndarray数组
  • 从文件中读取特定格式,创建ndarray数组。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

ndarray数组的变换
  • 对于创建后的ndarray数组,可以对其进行维度变换和元素类型变换。
    在这里插入图片描述

  • astype()方法一定回创建新的数组(原始数据的一个拷贝),即使两个类型一致。

ndarray数组向列表转换
  • ls = a.tolist()

在这里插入图片描述

数组的操作

数组的索引和切片
1、索引:获取数组中特定位置元素的过程。
2、切片:获取数组元素子集的过程。
在这里插入图片描述
在这里插入图片描述

ndarray的运算
  • 数组与标量之间的运算
  • 数组与标量之间的运算作用于数组的每一个元素

在这里插入图片描述

对ndarray中的数据执行元素级运算的函数

函数说明
np.abs(x) np.fabs(x)计算数组各元素的绝对值
np.sqrt(x)计算数组各元素的平方根
np.square(x)计算数组各元素的平方
np.log(x) np.log10(x) np.log2(x)计算数组各元素的自然对数、10底对数和2底对数
np.ceil(x) np.floor(x)计算各元素的ceiling值和floor值
np.rint(x)计算数组各元素的四舍五入值
np.modf(x)将数组各元素的小数和整数部分以连个独立数组形式返回
np.cos(x) np.cosh(x) np.sin(x) np.sinh(x) np.tan(x) np.tanh(x)计算数组各元素的普通型和双曲线型三角函数
np.exp(x)计算数组各元素的指数值
np.sign(x)计算数组各元素的符号值

Numpy二元函数

在这里插入图片描述

numpy存储和函数

CSV文件

CSV是一种常见的文件格式,用来存储批量数据,采用逗号分隔。
CSV文件只能有效存储一维或二维数组

np.savetxt(frame,array,fmt='%.18e',delimiter=None)
# frame:文件、字符串或产生器,可以是.gz或.bz2的压缩文件
#array:纯如文件的数组。
#fmt:写入文件的格式,例如%d %.2f %.18e
#delimiter:分割字符串,默认是任何空格。
#dtype:数据类型,可选
#unpack:如果True,读入属性将分别写入不同变量。
np.loadtxt(frame,dtype=np.float,delimiter=None,unpack=False)

多维数据的存取
a.tofile(frame,sep='',format='%s')
#frame:文件或字符串
#sep:数据分割字符串,如果是空串,写入文件为二进制。
#format:写入数据的格式。
#dtype:读取的数据类型。
#count:读入元素个数,-1表示读入整个文件。
#sep:数据分割字符串,如果是空串,写入文件为二进制。
np.fromFile(frame,dtype=float,count=-1,sep='')
NumPy的便捷文件存取

在这里插入图片描述

NumPy随机数函数

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
例子:

在这里插入图片描述
在这里插入图片描述

NumPy统计函数

在这里插入图片描述
在这里插入图片描述

例子:

在这里插入图片描述

NumPy梯度函数
函数说明
np.gradient(f)计算数组f中元素的梯度,当f为多维时,返回每个维度梯度

梯度:连续值之间的变化率,即斜率。
在这里插入图片描述
文章参考自MOOC python课程.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值