numpy 用法总结

本文详述numpy库的使用,包括创建ndarray、数组数据类型、常见属性、基本操作如索引、切片及通用函数。重点介绍了array函数、zeros、ones、empty、astype以及布尔型和花式索引在数据处理中的应用。
摘要由CSDN通过智能技术生成

简介

numpy 是Numerical Python的简称,是高性能的科学计算和数据分析的基础包,包含了大量的矩阵和数组的计算函数。下面来详细了解一下numpy的用法。

# 安装 numpy
pip install numpy
# 查看numpy的版本
numpy.__version__
# 导入numpy
import numpy as np

一、创建ndarray

ndarray:numpy中最基础的数据结构,一种多维的数组对象。
创建数组最简单的方法是使用array函数,它接受一切序列的对象,然后产生一个新的含有传入数据的numpy数组。

# 传入一个列表
data1 = [6, 7.5, 8, 0, 1]
data1 = np.array(data1)
data1
#输出
#array([6. , 7.5, 8. , 0. , 1. ])

# 传入嵌套序列会转化为多维数组
data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
data2 = np.array(data2)
data2
#输出
#array([[1, 2, 3, 4],
#       [5, 6, 7, 8]])

每个数组都会有一个shape(一个表示各维度大小的元组)和一个dtype(数组数据类型)

print(data1.shape, data1.dtype)
print(data2.shape, data2.dtype)
#输出
#(5,) float64
#(2, 4) int64

注意
1⃣️ 数组中所有元素的类型都相同;
2⃣️ 如果数组由列表创建,列表中的元素类型不一样时,会统一成某个相同的类型(优先级:str>float>int);

除npp.array之外,还有一些函数可以新建数组,比如zeros和ones可以新建指定长度或形状的全0和全1的数组,empty可以创建一个没有任何具体值的数据,在使用是应注意系统会初始化一个随机值。

np.zeros(10)
#输出
#array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

# 传入一个指定形状的元组
np.ones((3, 6))
#输出
#array([[1., 1., 1., 1., 1., 1.],
#       [1., 1., 1., 1., 1., 1.],
#       [1., 1., 1., 1., 1., 1.]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值