简介
numpy 是Numerical Python的简称,是高性能的科学计算和数据分析的基础包,包含了大量的矩阵和数组的计算函数。下面来详细了解一下numpy的用法。
# 安装 numpy
pip install numpy
# 查看numpy的版本
numpy.__version__
# 导入numpy
import numpy as np
一、创建ndarray
ndarray:numpy中最基础的数据结构,一种多维的数组对象。
创建数组最简单的方法是使用array函数,它接受一切序列的对象,然后产生一个新的含有传入数据的numpy数组。
# 传入一个列表
data1 = [6, 7.5, 8, 0, 1]
data1 = np.array(data1)
data1
#输出
#array([6. , 7.5, 8. , 0. , 1. ])
# 传入嵌套序列会转化为多维数组
data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
data2 = np.array(data2)
data2
#输出
#array([[1, 2, 3, 4],
# [5, 6, 7, 8]])
每个数组都会有一个shape(一个表示各维度大小的元组)和一个dtype(数组数据类型)
print(data1.shape, data1.dtype)
print(data2.shape, data2.dtype)
#输出
#(5,) float64
#(2, 4) int64
注意
1⃣️ 数组中所有元素的类型都相同;
2⃣️ 如果数组由列表创建,列表中的元素类型不一样时,会统一成某个相同的类型(优先级:str>float>int);
除npp.array之外,还有一些函数可以新建数组,比如zeros和ones可以新建指定长度或形状的全0和全1的数组,empty可以创建一个没有任何具体值的数据,在使用是应注意系统会初始化一个随机值。
np.zeros(10)
#输出
#array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
# 传入一个指定形状的元组
np.ones((3, 6))
#输出
#array([[1., 1., 1., 1., 1., 1.],
# [1., 1., 1., 1., 1., 1.],
# [1., 1., 1., 1., 1., 1.]])