Tnsorflow学习笔记---显存管理

1.简介

    在运行上面的blog的Tensorflow小程序的时候程序我们会遇到一个问题,当然这个问题不影响我们实际的结果计算,但是会给同样使用这台计算机的人带来麻烦,程序会自动调用所有能调用到的资源,并且全占满,在自己的PC上没问题,但是在服务器上,问题就很大,因为一旦你运行程序,占满显存别人就不能再用了,解决方法是我们通常是给程序运行指定一块GPU.

2.显存管理

2.1 查看显存以及内存

查看显存

nvidia-msi  #直接在bash输入即可
watch - 1 nvidia-smi #可以以1s的频率自动刷新界面,查看实时nvidia的显存

查看内存

top

2.2 申请固定显存大小

import tensorflow as tf  
import os  
os.environ["CUDA_VISIBLE_DEVICES"] = '0'   #指定第一块GPU可用  
config = tf.ConfigProto()  
config.gpu_options.per_process_gpu_memory_fraction = 0.5  # 程序最多只能占用指定gpu50%的显存  
sess = tf.Session(config = config) 

2.3申请动态显存大小

import tensorflow as tf  
import os  
os.environ["CUDA_VISIBLE_DEVICES"] = '0'   #指定第一块GPU可用  
config = tf.ConfigProto()  
config.gpu_options.per_process_gpu_memory_fraction = 0.5  # 程序最多只能占用指定gpu50%的显存  
config.gpu_options.allow_growth = True      #程序按需申请内存  
sess = tf.Session(config = config) 

3.结束

内容结束!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值