文章目录
- 基础公式和图像
- 1 基本函数图像
- 2 特殊函数图像
- 3 几何体
- 球 x 2 + y 2 + z 2 = a 2 x^2+y^2+z^2=a^2 x2+y2+z2=a2
- 圆 x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2
- 椭球 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1
- 椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1
- 扇形(圆的一部分)
- 圆柱
- 圆锥 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2
- 旋转抛物面 z = x 2 + y 2 z=x^2+y^2 z=x2+y2
- 正三棱锥(四面体) x a + x b + x c = 1 \frac{x}{a}+\frac{x}{b}+\frac{x}{c}=1 ax+bx+cx=1
- 等边三角形
- 梯形
- 正棱锥
- 棱柱【了解】
- 马鞍面【了解】
- 4 三角函数
- 5 等差数列 a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n−1)d
- 6 等比数列 a n = a 1 q n − 1 a_n=a_1q^{n-1} an=a1qn−1
- 7 阶乘和双阶乘
- 8 排列组合公式
- 9 二项式定理
- 10 符号函数 sign(x)
- 11 取整函数 [x]
- 12 一元二次方程 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0
- 13 立方差公式
- 14 立方和公式
- 15 平方和公式
- 16 常用不等式
- 17 特殊不等式
- 18 切线与法线
- 19 奇函数
- 20 偶函数
- 21 有理函数分解(待定系数法)
- 22 将曲线取极坐标系后的 θ 的取值
- 23 将曲线取参数方程后的 t 的取值
- 24 将椭圆域转换为极坐标形式
- 大学知识
- 1 等价无穷小
- 2 泰勒展开
- 3 不定积分
- 4 套娃函数
- 5 函数极限
- 6 保号性套话
- 7 数列极限
- 8 导数定义
- 9 微分定义
- 10 隐函数存在定理
- 11 反函数求导
- 12 曲率与曲率半径
- 13 曲率圆
- 14 高阶导数
- 15 最值
- 16 极值
- 17 凹凸性
- 18 拐点
- 19 极值点与拐点的重要结论
- 20 多项式根的重数
- 21 渐近线
- 22 定理
- 23 要求方程的根、函数的零点
- 24 微分不等式问题
- 25 积分不等式问题
- 26 物理应用
- 27 积分、函数、导数(“祖孙三代”):奇偶性、周期性、间断点处的可导性
- 28 积分比大小
- 29 反常积分判敛散性
- 30 伽马函数
- 31 定积分
- 32 几何应用
- 33 多元函数微分学
- 34 二重积分
- 35 微分方程
- 36 无穷级数
- 37 向量代数与空间解析几何
- 38 梯度(某点的一阶偏导,所得是向量)
- 39 方向导数(有±两个方向,算出来是个数)
- 40 方向导数与梯度的关系(梯度的模为方向导数的最大值)
- 41 散度(div)【一阶偏导相加】
- 42 旋度(rot)【三阶行列式一阶偏导】
- 43 求曲面Σ与直线L
- 44 求轨迹方程
- 45 三重积分(算体积)
- 46 第一型曲线积分(曲线方程L可代入)
- 47 第一型曲面积分(曲面方程Σ可代入)
- 48 第二型曲线积分(有向曲线,曲线方程不可代入)
- 49 第二型曲面积分(有向曲面,曲面方程不可代入)
- 50 两类曲面积分的关系
基础公式和图像
1 基本函数图像
2 特殊函数图像
3 几何体
球 x 2 + y 2 + z 2 = a 2 x^2+y^2+z^2=a^2 x2+y2+z2=a2
圆 x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2
S
圆
=
π
r
2
S_圆=πr^2
S圆=πr2
C
圆
=
2
π
r
C_圆=2πr
C圆=2πr
椭球 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1
V = 4 3 π a b c V=\frac{4}{3}πabc V=34πabc
在第一象限内的椭球面,在点 1 a 2 + b 2 + c 2 ( a 2 , b 2 , c 2 ) 处的法线与三个坐标轴成等角 在第一象限内的椭球面,在点\frac{1}{\sqrt{a^2+b^2+c^2}}(a^2,b^2,c^2)处的法线与三个坐标轴成等角 在第一象限内的椭球面,在点a2+b2+c21(a2,b2,c2)处的法线与三个坐标轴成等角
椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1
S = π a b S=πab S=πab
扇形(圆的一部分)
圆柱
{ ( x − x 0 ) 2 + ( y − y 0 ) 2 = r 2 z 1 ≤ z ≤ z 2 \begin{cases} (x - x_0)^2 + (y - y_0)^2 = r^2 \\ z_1 \leq z \leq z_2 \end{cases} {(x−x0)2+(y−y0)2=r2z1≤z≤z2
这个方程表示了一个以 z z z轴为轴线、高度为 z 2 − z 1 z_2 - z_1 z2−z1、底面圆心为 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)、半径为 r r r的圆柱体。
圆锥 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2
旋转抛物面 z = x 2 + y 2 z=x^2+y^2 z=x2+y2
正三棱锥(四面体) x a + x b + x c = 1 \frac{x}{a}+\frac{x}{b}+\frac{x}{c}=1 ax+bx+cx=1
等边三角形
三角形任意两边之和大于第三边
梯形
S
梯
=
(
a
+
b
)
h
2
=
(
上底
+
下底
)
×
高
2
S_梯=\frac{(a+b)h}{2}=\frac{(上底+下底)×高}{2}
S梯=2(a+b)h=2(上底+下底)×高
正棱锥
棱柱【了解】
马鞍面【了解】
4 三角函数
一全正二正弦三正切四余弦
诱导公式
奇偶指的是
π
2
的倍数的奇偶,即
k
π
2
,
k
是奇数就变,是偶数就不变
奇偶指的是\frac{π}{2}的倍数的奇偶,即k\frac{π}{2},k是奇数就变,是偶数就不变
奇偶指的是2π的倍数的奇偶,即k2π,k是奇数就变,是偶数就不变
特殊角
反三角函数公式
三角函数之间的关系
对角相乘为1
角度与π的转换
倍角公式(两角和公式)
常用:
c
o
s
θ
+
s
i
n
θ
=
2
s
i
n
(
θ
+
π
4
)
=
2
c
o
s
(
θ
−
π
4
)
cosθ+sinθ=\sqrt{2}sin(θ+\frac{π}{4})=\sqrt{2}cos(θ-\frac{π}{4})
cosθ+sinθ=2sin(θ+4π)=2cos(θ−4π)
c
o
s
θ
−
s
i
n
θ
=
−
2
s
i
n
(
θ
−
π
4
)
=
2
c
o
s
(
θ
+
π
4
)
cosθ-sinθ=-\sqrt{2}sin(θ-\frac{π}{4})=\sqrt{2}cos(θ+\frac{π}{4})
cosθ−sinθ=−2sin(θ−4π)=2cos(θ+4π)
万能公式
降幂公式
半角公式
sin ( θ 2 ) = ± 1 − cos ( θ ) 2 \sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos(\theta)}{2}} sin(2θ)=±21−cos(θ)
cos ( θ 2 ) = ± 1 + cos ( θ ) 2 \cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}} cos(2θ)=±21+cos(θ)
tan ( θ 2 ) = ± 1 − cos ( θ ) 1 + cos ( θ ) = sin ( θ ) 1 + cos ( θ ) = 1 − cos ( θ ) sin ( θ ) \tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} = \frac{\sin(\theta)}{1 + \cos(\theta)} = \frac{1 - \cos(\theta)}{\sin(\theta)} tan(2θ)=±1+cos(θ)1−cos(θ)=1+cos(θ)sin(θ)=sin(θ)1−cos(θ)
和差化积、积化和差
口诀1(基础):先α后β,先加后减。
口诀2:异s同c【补充记忆:前加后减,双s双减】
s
c
=
1
2
[
s
+
s
]
c
c
=
1
2
[
c
+
c
]
sc=\frac{1}{2}[s+s]\ \ \ \ \ \ \ \ \ \ cc=\frac{1}{2}[c+c]
sc=21[s+s] cc=21[c+c]
c
s
=
1
2
[
s
−
s
]
s
s
=
−
1
2
[
c
−
c
]
cs=\frac{1}{2}[s-s]\ \ \ \ \ \ \ \ \ \ \ ss=-\frac{1}{2}[c-c]
cs=21[s−s] ss=−21[c−c]
口诀3:积化和差内不除
s
i
n
α
c
o
s
β
=
1
2
[
s
i
n
(
α
+
β
)
+
s
i
n
(
α
−
β
)
]
c
o
s
α
c
o
s
β
=
1
2
[
c
o
s
(
α
+
β
)
+
c
o
s
(
α
−
β
)
]
sinαcosβ=\frac{1}{2}[sin(α+β)+sin(α-β)]\ \ \ \ \ \ \ \ \ \ cosαcosβ=\frac{1}{2}[cos(α+β)+cos(α-β)]
sinαcosβ=21[sin(α+β)+sin(α−β)] cosαcosβ=21[cos(α+β)+cos(α−β)]
c
o
s
α
s
i
n
β
=
1
2
[
s
i
n
(
α
+
β
)
−
s
i
n
(
α
−
β
)
]
s
i
n
α
s
i
n
β
=
−
1
2
[
c
o
s
(
α
+
β
)
−
c
o
s
(
α
−
β
)
]
cosαsinβ=\frac{1}{2}[sin(α+β)-sin(α-β)]\ \ \ \ \ \ \ \ \ \ sinαsinβ=-\frac{1}{2}[cos(α+β)-cos(α-β)]
cosαsinβ=21[sin(α+β)−sin(α−β)] sinαsinβ=−21[cos(α+β)−cos(α−β)]
口诀4:和差化积内除2
s
i
n
α
+
s
i
n
β
=
2
s
i
n
(
α
+
β
2
)
c
o
s
(
α
−
β
2
)
c
o
s
α
+
c
o
s
β
=
2
c
o
s
(
α
+
β
2
)
c
o
s
(
α
−
β
2
)
sinα+sinβ=2sin(\frac{α+β}{2})cos(\frac{α-β}{2})\ \ \ \ \ \ \ \ \ \ cosα+cosβ=2cos(\frac{α+β}{2})cos(\frac{α-β}{2})
sinα+sinβ=2sin(2α+β)cos(2α−β) cosα+cosβ=2cos(2α+β)cos(2α−β)
s
i
n
α
−
s
i
n
β
=
2
c
o
s
(
α
+
β
2
)
s
i
n
(
α
−
β
2
)
c
o
s
α
−
c
o
s
β
=
−
2
s
i
n
(
α
+
β
2
)
s
i
n
(
α
−
β
2
)
sinα-sinβ=2cos(\frac{α+β}{2})sin(\frac{α-β}{2})\ \ \ \ \ \ \ \ \ \ cosα-cosβ=-2sin(\frac{α+β}{2})sin(\frac{α-β}{2})
sinα−sinβ=2cos(2α+β)sin(2α−β) cosα−cosβ=−2sin(2α+β)sin(2α−β)
4句口诀巧记【积化和差、和差化积】八个等式
三倍角公式(不重要)
sin ( 3 θ ) = 3 sin ( θ ) − 4 sin 3 ( θ ) \sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta) sin(3θ)=3sin(θ)−4sin3(θ)
cos ( 3 θ ) = 4 cos 3 ( θ ) − 3 cos ( θ ) \cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta) cos(3θ)=4cos3(θ)−3cos(θ)
tan ( 3 θ ) = 3 tan ( θ ) − tan 3 ( θ ) 1 − 3 tan 2 ( θ ) \tan(3\theta) = \frac{3\tan(\theta) - \tan^3(\theta)}{1 - 3\tan^2(\theta)} tan(3θ)=1−3tan2(θ)3tan(θ)−tan3(θ)
5 等差数列 a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n−1)d
S n = n ( a 1 + a n ) 2 = n a 1 + n ( n − 1 ) 2 d S_n=\frac{n(a_1+a_n)}{2}=na_1+\frac{n(n-1)}{2}d Sn=2n(a1+an)=na1+2n(n−1)d
6 等比数列 a n = a 1 q n − 1 a_n=a_1q^{n-1} an=a1qn−1
S n = a 1 ( 1 − q n ) 1 − q , q ≠ 1 S_n=\frac{a_1(1-q^n)}{1-q},q≠1 Sn=1−qa1(1−qn),q=1
7 阶乘和双阶乘
阶乘的定义如下:
n ! = n × ( n − 1 ) × ( n − 2 ) × ⋯ × 1 n! = n \times (n-1) \times (n-2) \times \cdots \times 1 n!=n×(n−1)×(n−2)×⋯×1
其中, 0 ! 0! 0! 定义为 1,即:
0 ! = 1 0! = 1 0!=1
示例:
- 3 ! = 3 × 2 × 1 = 6 3! = 3 \times 2 \times 1 = 6 3!=3×2×1=6
- 5 ! = 5 × 4 × 3 × 2 × 1 = 120 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 5!=5×4×3×2×1=120
双阶乘可以有两种定义方式,一种是用于奇数,一种是用于偶数:
-
奇数的双阶乘:
如果 n n n 是奇数,则双阶乘表示从 n n n 开始,每次减去 2,直到乘到 1 为止:
n ! ! = n × ( n − 2 ) × ( n − 4 ) × ⋯ × 1 n!! = n \times (n-2) \times (n-4) \times \cdots \times 1 n!!=n×(n−2)×(n−4)×⋯×1
例如:
- 5 ! ! = 5 × 3 × 1 = 15 5!! = 5 \times 3 \times 1 = 15 5!!=5×3×1=15
- 7 ! ! = 7 × 5 × 3 × 1 = 105 7!! = 7 \times 5 \times 3 \times 1 = 105 7!!=7×5×3×1=105
-
偶数的双阶乘:
如果 n n n 是偶数,则双阶乘表示从 n n n 开始,每次减去 2,直到乘到 2 为止:
n ! ! = n × ( n − 2 ) × ( n − 4 ) × ⋯ × 2 n!! = n \times (n-2) \times (n-4) \times \cdots \times 2 n!!=n×(n−2)×(n−4)×⋯×2
例如:
- 6 ! ! = 6 × 4 × 2 = 48 6!! = 6 \times 4 \times 2 = 48 6!!=6×4×2=48
- 8 ! ! = 8 × 6 × 4 × 2 = 384 8!! = 8 \times 6 \times 4 \times 2 = 384 8!!=8×6×4×2=384
双阶乘的定义也可以包括 0 ! ! 0!! 0!! 和 ( − 1 ) ! ! (-1)!! (−1)!!,它们都定义为 1:
0 ! ! = 1 0!! = 1 0!!=1
( − 1 ) ! ! = 1 (-1)!! = 1 (−1)!!=1
8 排列组合公式
排列数公式: A n m = n ! ( n − m ) ! = n × ( n − 1 ) × ( n − 2 ) × ⋯ × ( n − m + 1 ) 排列数公式:A^m_n = \frac{n!}{(n-m)!}= n \times (n-1) \times (n-2) \times \cdots \times (n-m+1) 排列数公式:Anm=(n−m)!n!=n×(n−1)×(n−2)×⋯×(n−m+1)
排列数 A n m A^m_n Anm 表示从 n n n 个元素中选取 m m m 个元素进行排列的数量。排列与组合的区别在于排列考虑了顺序,而组合不考虑顺序。
组合数公式:
C
n
m
=
n
!
m
!
(
n
−
m
)
!
=
A
n
m
m
!
组合数公式:C^m_n=\frac{n!}{m!(n-m)!}=\frac{A^m_n}{m!}
组合数公式:Cnm=m!(n−m)!n!=m!Anm
组合数对称性:
C
n
m
=
C
n
n
−
m
组合数对称性:C_n^m=C_n^{n-m}
组合数对称性:Cnm=Cnn−m
组合数递推关系:
C
n
+
1
m
=
C
n
m
+
C
n
m
−
1
组合数递推关系:C^m_{n+1}=C_n^m+C_n^{m-1}
组合数递推关系:Cn+1m=Cnm+Cnm−1
9 二项式定理
(
a
+
b
)
n
=
∑
k
=
0
n
C
n
k
a
n
−
k
b
k
,
n
∈
N
+
(a+b)^n=\sum_{k=0}^{n}C_n^ka^{n-k}b^k,n∈N^+
(a+b)n=k=0∑nCnkan−kbk,n∈N+
当
a
=
b
=
1
时,
C
n
0
+
C
n
1
+
C
n
2
+
.
.
.
+
C
n
n
=
2
n
当a=b=1时,C^0_n+C^1_n+C^2_n+...+C^n_n=2^n
当a=b=1时,Cn0+Cn1+Cn2+...+Cnn=2n
10 符号函数 sign(x)
sgn ( x ) = { 1 if x > 0 0 if x = 0 − 1 if x < 0 \text{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases} sgn(x)=⎩ ⎨ ⎧10−1if x>0if x=0if x<0
11 取整函数 [x]
将一个实数
x
x
x 向下取整到不大于
x
x
x 的最大整数
[
x
+
n
]
=
[
x
]
+
n
[x+n]=[x]+n
[x+n]=[x]+n
如果
x
≤
y
,则
[
x
]
≤
[
y
]
如果 x \leq y ,则 [x] \leq [y]
如果x≤y,则[x]≤[y]
[
x
+
y
]
≤
[
x
]
+
[
y
]
<
[
x
]
+
[
y
]
+
1
[x + y] \leq [x] + [y] < [x] + [y] + 1
[x+y]≤[x]+[y]<[x]+[y]+1
x
−
1
<
[
x
]
≤
x
<
[
x
]
+
1
x-1<[x] \leq x < [x] + 1
x−1<[x]≤x<[x]+1
[
n
x
]
=
n
[
x
]
(
n
为正整数
)
[nx] = n[x] \quad ( n \text{ 为正整数})
[nx]=n[x](n 为正整数)
lim
n
→
0
−
[
x
]
=
−
1
,
lim
n
→
0
+
[
x
]
=
0
\lim_{{n \to 0^-}} [x] =-1,\quad \lim_{{n \to 0^+}} [x] =0
n→0−lim[x]=−1,n→0+lim[x]=0
12 一元二次方程 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0
x
1
,
2
=
−
b
±
b
2
−
4
a
c
2
a
;
x
1
+
x
2
=
−
b
a
,
x
1
x
2
=
c
a
x_{1,2} = \frac{{-b ± \sqrt{b^2 - 4ac}}}{{2a}};\quad x_1+x_2=-\frac{b}{a},\quad x_1x_2=\frac{c}{a}
x1,2=2a−b±b2−4ac;x1+x2=−ab,x1x2=ac
Δ
=
b
2
−
4
a
c
\Delta = b^2 - 4ac
Δ=b2−4ac
Δ
>
0
⟶
x
1
≠
x
2
;
Δ
=
0
⟶
x
1
=
x
2
;
Δ
<
0
⟶
有两个共轭复根
\Delta > 0 ⟶ x_1≠x_2;\Delta = 0 ⟶ x_1=x_2;\Delta < 0 ⟶ 有两个共轭复根
Δ>0⟶x1=x2;Δ=0⟶x1=x2;Δ<0⟶有两个共轭复根
y
=
a
x
2
+
b
x
+
c
的顶点坐标:
(
−
b
2
a
,
c
−
b
2
4
a
)
y=ax^2+bx+c的顶点坐标:\left(-\frac{b}{2a}, c - \frac{b^2}{4a}\right)
y=ax2+bx+c的顶点坐标:(−2ab,c−4ab2)
f
(
x
)
=
(
x
−
a
)
2
+
(
x
−
b
)
2
的最小值为:
(
a
−
b
)
2
2
f(x)=(x-a)^2 + (x-b)^2的最小值为: \frac{(a-b)^2}{2}
f(x)=(x−a)2+(x−b)2的最小值为:2(a−b)2
13 立方差公式
a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3 - b^3 = (a - b)(a^2 + ab + b^2) a3−b3=(a−b)(a2+ab+b2)
a n − b n = ( a − b ) ∑ k = 0 n − 1 a n − 1 − k b k = ( a − b ) ( a n − 1 + a n − 2 b + a n − 3 b 2 + ⋯ + a b n − 2 + b n − 1 ) a^n - b^n = (a - b)\sum_{k=0}^{n-1} a^{n-1-k}b^k= (a - b)\left(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \cdots + ab^{n-2} + b^{n-1}\right) an−bn=(a−b)k=0∑n−1an−1−kbk=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)
( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 (a−b)3=a3−3a2b+3ab2−b3
14 立方和公式
a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3 + b^3 = (a + b)(a^2 - ab + b^2) a3+b3=(a+b)(a2−ab+b2)
( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 (a+b)3=a3+3a2b+3ab2+b3
15 平方和公式
(
a
+
b
)
2
=
a
2
+
b
2
+
2
a
b
(a + b)^2 = a^2 + b^2 + 2ab
(a+b)2=a2+b2+2ab
(
a
+
b
+
c
)
2
=
a
2
+
b
2
+
c
2
+
2
a
b
+
2
b
c
+
2
c
a
(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca
(
a
x
+
b
y
+
c
z
)
2
=
a
2
x
2
+
b
2
y
2
+
c
2
z
2
+
2
a
b
x
y
+
2
a
c
x
z
+
2
b
c
y
z
(ax + by + cz)^2 = a^2 x^2 + b^2 y^2 + c^2 z^2 + 2ab xy + 2ac xz + 2bc yz
(ax+by+cz)2=a2x2+b2y2+c2z2+2abxy+2acxz+2bcyz
(
a
+
b
+
c
+
d
)
2
=
a
2
+
b
2
+
c
2
+
d
2
+
2
(
a
b
+
a
c
+
a
d
+
b
c
+
b
d
+
c
d
)
(a + b + c + d)^2 = a^2 + b^2 + c^2 + d^2 + 2(ab + ac + ad + bc + bd + cd)
(a+b+c+d)2=a2+b2+c2+d2+2(ab+ac+ad+bc+bd+cd)
(
a
1
+
a
2
+
a
3
+
…
+
a
n
)
2
=
∑
i
=
1
n
a
i
2
+
2
∑
1
≤
i
<
j
≤
n
a
i
a
j
(a_1 + a_2 + a_3 + \ldots + a_n)^2 = \sum_{i=1}^{n} a_i^2 + 2 \sum_{1 \leq i < j \leq n} a_i a_j
(a1+a2+a3+…+an)2=i=1∑nai2+21≤i<j≤n∑aiaj
16 常用不等式
∣
a
±
b
∣
≤
∣
a
∣
+
∣
b
∣
|a±b|≤|a|+|b|
∣a±b∣≤∣a∣+∣b∣
∣
∣
a
∣
−
∣
b
∣
∣
≤
∣
a
−
b
∣
| |a|-|b| |≤|a-b|
∣∣a∣−∣b∣∣≤∣a−b∣
a
b
≤
a
2
+
b
2
2
ab \leq \frac{a^2 + b^2}{2}
ab≤2a2+b2
a b ≤ ( a + b 2 ) 2 ; a ≠ b 时 a b < ( a + b 2 ) 2 ab \leq \left( \frac{a+b}{2} \right)^2;a≠b时ab < \left( \frac{a+b}{2} \right)^2 ab≤(2a+b)2;a=b时ab<(2a+b)2
∣ u n n ∣ ≤ 1 2 ( u n 2 + 1 n 2 ) \left|\frac{u_n}{n}\right|≤\frac{1}{2}(u_n^2+\frac{1}{n^2}) nun ≤21(un2+n21)
a
b
≤
a
+
b
2
≤
a
2
+
b
2
2
或
a
b
≤
a
+
b
2
≤
a
2
+
b
2
2
(
a
,
b
>
0
)
\sqrt{ab} \leq \frac{a + b}{2} \leq \sqrt{\frac{a^2 + b^2}{2}} \quad 或\quad \sqrt{ab} \leq \frac{a + b}{2} \leq\frac{a^2 + b^2}{2}(a,b>0)
ab≤2a+b≤2a2+b2或ab≤2a+b≤2a2+b2(a,b>0)
a
b
c
3
≤
a
+
b
+
c
3
≤
a
2
+
b
2
+
c
2
3
或
a
b
c
3
≤
a
+
b
+
c
3
≤
a
2
+
b
2
+
c
2
3
\sqrt[3]{abc} \leq \frac{a+b+c}{3} \leq \sqrt{\frac{a^2 + b^2 + c^2}{3}} \quad 或\quad \sqrt[3]{abc} \leq \frac{a + b + c}{3} \leq \frac{a^2 + b^2 + c^2}{3}
3abc≤3a+b+c≤3a2+b2+c2或3abc≤3a+b+c≤3a2+b2+c2
a 1 a 2 a 3 . . . a n n ≤ a 1 + a 2 + ⋯ + a n n ≤ a 1 2 + a 2 2 + ⋯ + a n 2 n 或 ≤ a 1 2 + a 2 2 + ⋯ + a n 2 n a i ≥ 0 ( i = 1 , 2 , . . . , n ) \sqrt[n]{a_1a_2a_3...a_n} \leq \frac{a_1+a_2+\cdots+a_n}{n} \leq \sqrt{\frac{a_1^2 + a_2^2 +\cdots+ a_n^2}{n}} \quad 或\quad \leq \frac{a_1^2 + a_2^2 +\cdots+ a_n^2}{n} \quad a_i≥0(i=1,2,...,n) na1a2a3...an≤na1+a2+⋯+an≤na12+a22+⋯+an2或≤na12+a22+⋯+an2ai≥0(i=1,2,...,n)
若 a > b > 0 ,则 { n > 0 , a n > b n n < 0 , a n < b n 若a>b>0,则 \begin{cases} n>0,a^n>b^n \\ n<0,a^n<b^n \end{cases} 若a>b>0,则{n>0,an>bnn<0,an<bn
若 { 0 < a < x < b 0 < c < y < d 则, c b < y x < d a 若 \begin{cases} 0<a<x<b\\ 0<c<y<d \end{cases}则,\frac{c}{b}<\frac{y}{x}<\frac{d}{a} 若{0<a<x<b0<c<y<d则,bc<xy<ad
s
i
n
x
<
x
<
t
a
n
x
,
x
∈
(
0
,
π
2
)
sinx<x<tanx,\quad x∈\left(0,\frac{π}{2}\right)
sinx<x<tanx,x∈(0,2π)
∫
0
π
/
2
s
i
n
x
1
+
x
2
d
x
<
∫
0
π
/
2
c
o
s
x
1
+
x
2
d
x
∫_0^{π/2}\frac{sinx}{1+x^2}dx<∫_0^{π/2}\frac{cosx}{1+x^2}dx
∫0π/21+x2sinxdx<∫0π/21+x2cosxdx
∫
0
1
s
i
n
x
1
−
x
2
d
x
<
1
,
∫
0
1
c
o
s
x
1
−
x
2
d
x
>
1
∫_0^1\frac{sinx}{\sqrt{1-x^2}}dx<1,∫_0^1\frac{cosx}{\sqrt{1-x^2}}dx>1
∫011−x2sinxdx<1,∫011−x2cosxdx>1
s
i
n
α
x
≤
s
i
n
x
α
,
t
a
n
α
x
≥
t
a
n
x
α
,
x
∈
[
0
,
1
]
,
α
>
1
sin^αx≤sinx^α,tan^αx≥tanx^α,\quad x∈[0,1],α>1
sinαx≤sinxα,tanαx≥tanxα,x∈[0,1],α>1
a
r
c
t
a
n
x
≤
x
≤
a
r
c
s
i
n
x
,
x
∈
[
0
,
1
]
arctanx≤x≤arcsinx,\quad x∈[0,1]
arctanx≤x≤arcsinx,x∈[0,1]
a
r
c
s
i
n
x
2
x
2
<
a
r
c
s
i
n
x
x
<
(
a
r
c
s
i
n
x
x
)
2
,
0
<
x
<
1
\frac{arcsinx^2}{x^2}<\frac{arcsinx}{x}<\left(\frac{arcsinx}{x}\right)^2,\quad 0<x<1
x2arcsinx2<xarcsinx<(xarcsinx)2,0<x<1
对于任意的
x
,有
e
x
−
1
≥
x
对于任意的x,有e^x-1≥x
对于任意的x,有ex−1≥x
x
−
1
≥
l
n
x
,
x
>
0
x-1≥lnx,\quad x>0
x−1≥lnx,x>0
1
1
+
x
<
l
n
(
1
+
1
x
)
<
1
x
,
x
>
0
\frac{1}{1+x}<ln(1+\frac{1}{x})<\frac{1}{x},\quad x>0
1+x1<ln(1+x1)<x1,x>0
( a 1 b 1 + a 2 b 2 + ⋯ + a n b n ) 2 ≤ ( a 1 2 + a 2 2 + ⋯ + a n 2 ) ( b 1 2 + b 2 2 + ⋯ + b n 2 ) (a_1 b_1 + a_2 b_2 + \cdots + a_n b_n)^2 \leq (a_1^2 + a_2^2 + \cdots + a_n^2)(b_1^2 + b_2^2 + \cdots + b_n^2) (a1b1+a2b2+⋯+anbn)2≤(a12+a22+⋯+an2)(b12+b22+⋯+bn2)
对于任意向量 u 和 v ,有: ∥ u + v ∥ ≤ ∥ u ∥ + ∥ v ∥ 对于任意向量 \mathbf{u} 和 \mathbf{v},有: \|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\| 对于任意向量u和v,有:∥u+v∥≤∥u∥+∥v∥
对于实数 x ≥ − 1 和整数 n ≥ 0 ,有: ( 1 + x ) n ≥ 1 + n x 对于实数 x \geq -1 和整数 n \geq 0 ,有:(1 + x)^n \geq 1 + nx 对于实数x≥−1和整数n≥0,有:(1+x)n≥1+nx
x → + ∞ 有, x x x + 1 > x ( x + 1 ) x > ( x + 1 ) x x x \to +\infty \quad有,\quad x^{x^{x+1}} > x^{(x+1)^x} > (x+1)^{x^x} x→+∞有,xxx+1>x(x+1)x>(x+1)xx
∣ ∂ f ∂ x ∣ ≤ 1 , ∣ ∂ f ∂ y ∣ ≤ 1 ⇒ ∣ f ( x 1 , y 1 ) − f ( x 2 , y 2 ) ∣ ≤ ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ \left|\frac{∂f}{∂x}\right|≤1,\left|\frac{∂f}{∂y}\right|≤1⇒\left|f(x_1,y_1)-f(x_2,y_2)\right|≤\left|x_1-x_2\right|+\left|y_1-y_2\right| ∂x∂f ≤1, ∂y∂f ≤1⇒∣f(x1,y1)−f(x2,y2)∣≤∣x1−x2∣+∣y1−y2∣
17 特殊不等式
柯西-施瓦茨不等式
f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在区间 [ a , b ] [a,b] [a,b]上连续,则 [ ∫ a b f ( x ) g ( x ) d x ] 2 ≤ ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x \left[∫_a^bf(x)g(x)dx\right]^2≤∫_a^bf^2(x)dx·∫_a^bg^2(x)dx [∫abf(x)g(x)dx]2≤∫abf2(x)dx⋅∫abg2(x)dx
闵可夫斯基不等式
f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在区间 [ a , b ] [a,b] [a,b]上连续,则 ∫ a b [ f ( x ) + g ( x ) ] 2 d x ≤ ∫ a b f 2 ( x ) d x + ∫ a b g 2 ( x ) d x \sqrt{∫_a^b\left[f(x)+g(x)\right]^2dx}≤\sqrt{∫_a^bf^2(x)dx}+\sqrt{∫_a^bg^2(x)dx} ∫ab[f(x)+g(x)]2dx≤∫abf2(x)dx+∫abg2(x)dx
18 切线与法线
切线 | 法线 | |
---|---|---|
斜率 | y ′ ( x ) y'(x) y′(x) | − 1 y ′ ( x ) -\frac{1}{y'(x)} −y′(x)1 |
方程 | Y − y = y ′ ( x ) ( X − x ) Y-y=y'(x)(X-x) Y−y=y′(x)(X−x) | Y − y = − 1 y ′ ( x ) ( X − x ) Y-y=-\frac{1}{y'(x)}(X-x) Y−y=−y′(x)1(X−x) |
y轴上截距 | x − y y ′ ( x ) x-\frac{y}{y'(x)} x−y′(x)y | x + y y ′ ( x ) x+yy'(x) x+yy′(x) |
x轴上截距 | y − x y ′ ( x ) y-xy'(x) y−xy′(x) | y + x y ′ ( x ) y+\frac{x}{y'(x)} y+y′(x)x |
19 奇函数
f
(
x
)
=
−
f
(
−
x
)
f(x)=-f(-x)
f(x)=−f(−x)
若
f
(
x
)
是奇函数,且在原点有定义,则
f
(
0
)
=
0
若f(x)是奇函数,且在原点有定义,则f(0)=0
若f(x)是奇函数,且在原点有定义,则f(0)=0
20 偶函数
f
(
x
)
=
f
(
−
x
)
f(x)=f(-x)
f(x)=f(−x)
若
f
(
x
)
是可导的偶函数,则
f
′
(
0
)
=
0
若f(x)是可导的偶函数,则f'(0)=0
若f(x)是可导的偶函数,则f′(0)=0
21 有理函数分解(待定系数法)
22 将曲线取极坐标系后的 θ 的取值
23 将曲线取参数方程后的 t 的取值
24 将椭圆域转换为极坐标形式
大学知识
1 等价无穷小
2 泰勒展开
3 不定积分
形如下式都能用表格法
4 套娃函数
套娃函数:由f(x)计算f(f(x))的表达式
5 函数极限
定义: lim x → x 0 f ( x ) = A ⇔ ∀ ε > 0 ,当 x → x 0 时, ∣ f ( x ) − A ∣ < ε 定义:\lim_{x \to x_0} f(x) =A \Leftrightarrow ∀ε>0,当x→x_0时,|f(x)-A|<ε 定义:x→x0limf(x)=A⇔∀ε>0,当x→x0时,∣f(x)−A∣<ε
若 lim x → x 0 f ( x ) = A 若\lim_{x \to x_0} f(x) =A 若limx→x0f(x)=A,
- (唯一性)左极限=右极限
- (局部有界性)当 x → x 0 x→x_0 x→x0时,若 A > 0 A>0 A>0,则 f ( x ) > 0 f(x)>0 f(x)>0;当 x → x 0 x→x_0 x→x0时,若 f ( x ) ≥ 0 f(x)≥0 f(x)≥0,则 A ≥ 0 A≥0 A≥0
- (等式脱帽法) f ( x ) = A + α ,其中 lim x → x 0 α = 0 f(x)=A+α,其中\lim_{x \to x_0} α =0 f(x)=A+α,其中limx→x0α=0
6 保号性套话
由 lim x → 0 f ( x ) x < 0 ,由极限保号性可知,存在 δ > 0 ,使得当 x ∈ ( 0 , δ ) 时, f ( x ) x < 0 ,即 f ( x ) < 0 由\lim_{{x \to 0}}\frac{ f(x)}{x}<0,由极限保号性可知,存在\delta > 0,使得当x∈(0,\delta)时,\frac{ f(x)}{x}<0,即f(x)<0 由x→0limxf(x)<0,由极限保号性可知,存在δ>0,使得当x∈(0,δ)时,xf(x)<0,即f(x)<0
7 数列极限
定义
定义:
lim
n
→
∞
x
n
=
A
⇔
∀
ε
>
0
,当
n
>
N
时,
∣
x
n
−
A
∣
<
ε
定义:\lim_{n \to ∞}x_n =A \Leftrightarrow ∀ε>0,当n>N时,|x_n-A|<ε
定义:n→∞limxn=A⇔∀ε>0,当n>N时,∣xn−A∣<ε
若 lim x → x 0 g ( x ) = ∞ ⇔ 对上述 N > 0 ,存在 δ > 0 ,使得当 0 < ∣ x − x 0 ∣ < δ 时,有 ∣ g ( x ) ∣ > N 若\lim_{x \to x_0}g(x) =∞ \Leftrightarrow 对上述N>0,存在\delta>0,使得当0<|x-x_0|<\delta 时,有|g(x)|>N 若x→x0limg(x)=∞⇔对上述N>0,存在δ>0,使得当0<∣x−x0∣<δ时,有∣g(x)∣>N
性质
补充:有界
±
有界,有界
×
有界
→
有界;有界
±
无界
→
无界。其他情况都是不确定
补充:有界±有界,有界×有界→有界;有界±无界→无界。其他情况都是不确定
补充:有界±有界,有界×有界→有界;有界±无界→无界。其他情况都是不确定
若
x
n
单调,
f
(
x
)
在
R
内单调有界,则
f
(
x
n
)
收敛
若{x_n}单调,f(x)在R内单调有界,则{f(x_n)}收敛
若xn单调,f(x)在R内单调有界,则f(xn)收敛
数列证明题
要证连续性
⇒
用夹逼准则
要证连续性\Rightarrow用夹逼准则
要证连续性⇒用夹逼准则
要证解唯一
⇒
先零点定理,再单调性
要证解唯一\Rightarrow先零点定理,再单调性
要证解唯一⇒先零点定理,再单调性
单调有界准则:若
x
n
单调增加(减少)且有上界(下界),则
lim
n
→
∞
x
n
=
a
存在
单调有界准则:若{x_n}单调增加(减少)且有上界(下界),则\lim_{n \to \infty} x_n=a存在
单调有界准则:若xn单调增加(减少)且有上界(下界),则n→∞limxn=a存在
一些论断
8 导数定义
导数有界则函数有界: f ′ ( x ) 在 ( a , b ) 内有界,则 f ( x ) 在 ( a , b ) 内有界 导数有界则函数有界:f'(x)在(a,b)内有界,则f(x)在(a,b)内有界 导数有界则函数有界:f′(x)在(a,b)内有界,则f(x)在(a,b)内有界
绝对值函数可导点的判断
9 微分定义
10 隐函数存在定理
d y d x = − F x ′ F y ′ \frac{dy}{dx}=-\frac{F'_x}{F'_y} dxdy=−Fy′Fx′
11 反函数求导
12 曲率与曲率半径
13 曲率圆
曲率半径 R 就是曲率圆的半径 曲率半径R就是曲率圆的半径 曲率半径R就是曲率圆的半径
曲线在点
(
x
0
,
y
0
)
(x_0, y_0)
(x0,y0) 处的曲率圆的圆心坐标为:
(
x
center
,
y
center
)
=
(
x
0
,
y
0
)
+
R
u
(x_{\text{center}}, y_{\text{center}}) = (x_0, y_0) + R \mathbf{u}
(xcenter,ycenter)=(x0,y0)+Ru
其中,
R
R
R 是曲率半径,
u
\mathbf{u}
u 是单位法向量(法线的方向向量的单位化形式)。这个公式对于所有曲线和任意点
(
x
0
,
y
0
)
(x_0, y_0)
(x0,y0) 都适用。
法向量
u
\mathbf{u}
u 是法线方向的单位向量。它与切线方向垂直,且指向曲率圆的圆心。对于平面曲线
y
=
f
(
x
)
y = f(x)
y=f(x) 来说,法向量的方向为:
u
=
(
−
f
′
(
x
0
)
,
1
)
1
+
(
f
′
(
x
0
)
)
2
\mathbf{u} = \frac{(-f'(x_0), 1)}{\sqrt{1 + (f'(x_0))^2}}
u=1+(f′(x0))2(−f′(x0),1)
14 高阶导数
15 最值
费马定理:若 f ( x ) 在 [ a , b ] 上可导,且在点 x = c ∈ ( a , b ) 内取得最小值或最大值,则必有 f ′ ( c ) = 0 费马定理:若f(x)在[a,b]上可导,且在点x=c∈(a,b)内取得最小值或最大值,则必有f'(c)=0 费马定理:若f(x)在[a,b]上可导,且在点x=c∈(a,b)内取得最小值或最大值,则必有f′(c)=0
若 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上可导,则 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上必存在最大值 M M M(最小值 m m m),
- 若 f ( a ) = M ( m ) f(a)=M(m) f(a)=M(m),则 f + ′ ( a ) ≤ 0 ( ≥ 0 ) f'_+(a)≤0(≥0) f+′(a)≤0(≥0)【记:最小点取得最大值(最小值),则在该点处导数 ≤ 0 ( ≥ 0 ) ≤0(≥0) ≤0(≥0)】
- 若 f ( b ) = M ( m ) f(b)=M(m) f(b)=M(m),则 f − ′ ( a ) ≥ 0 ( ≤ 0 ) f'_-(a)≥0(≤0) f−′(a)≥0(≤0)【记:最大点取得最大值(最小值),则在该点处导数 ≥ 0 ( ≤ 0 ) ≥0(≤0) ≥0(≤0)】
16 极值
费马定理:若
f
(
x
)
在
x
=
x
0
处可导,且在点
x
0
处取得极值,则必有
f
′
(
x
0
)
=
0
费马定理:若f(x)在x=x_0处可导,且在点x_0处取得极值,则必有f'(x_0)=0
费马定理:若f(x)在x=x0处可导,且在点x0处取得极值,则必有f′(x0)=0
17 凹凸性
注:若二阶导仅在一个点处大于 0 (小于 0 ),则不能说明曲线是凹的(凸的) 注:若二阶导仅在一个点处大于0(小于0),则不能说明曲线是凹的(凸的) 注:若二阶导仅在一个点处大于0(小于0),则不能说明曲线是凹的(凸的)
18 拐点
19 极值点与拐点的重要结论
20 多项式根的重数
在数学中,关于多项式根的重数,我们有以下两个重要结论:
-
若 x − x 0 x - x_0 x−x0 为 f ( x ) f(x) f(x) 的 n n n 重因式,则 x 0 x_0 x0 为 f ( x ) f(x) f(x) 的 n n n 重根。
这意味着,如果一个多项式 f ( x ) f(x) f(x) 可以被表示为 ( x − x 0 ) n ⋅ g ( x ) (x - x_0)^n \cdot g(x) (x−x0)n⋅g(x),其中 g ( x ) g(x) g(x) 在 x 0 x_0 x0 处不为零,那么 x 0 x_0 x0 是 f ( x ) f(x) f(x) 的 n n n 重根。
-
若 x 0 x_0 x0 为 f ( x ) f(x) f(x) 的 n n n 重根,则 x 0 x_0 x0 是 f ′ ( x ) f'(x) f′(x) 的 n − 1 n-1 n−1 重根。
如果 x 0 x_0 x0 是 f ( x ) f(x) f(x) 的 n n n 重根,这意味着 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处至少有 n n n 次零,即
f ( x ) = ( x − x 0 ) n ⋅ g ( x ) f(x) = (x - x_0)^n \cdot g(x) f(x)=(x−x0)n⋅g(x)
其中 g ( x ) g(x) g(x) 在 x 0 x_0 x0 处不为零。通过求导,可以得到
f ′ ( x ) = n ( x − x 0 ) n − 1 ⋅ g ( x ) + ( x − x 0 ) n ⋅ g ′ ( x ) f'(x) = n(x - x_0)^{n-1} \cdot g(x) + (x - x_0)^n \cdot g'(x) f′(x)=n(x−x0)n−1⋅g(x)+(x−x0)n⋅g′(x)
当 x = x 0 x = x_0 x=x0 时, f ′ ( x 0 ) = 0 f'(x_0) = 0 f′(x0)=0 且 f ′ ′ ( x 0 ) = 0 , … , f ( n − 1 ) ( x 0 ) = 0 f''(x_0) = 0, \ldots, f^{(n-1)}(x_0) = 0 f′′(x0)=0,…,f(n−1)(x0)=0,但是 f ( n ) ( x 0 ) ≠ 0 f^{(n)}(x_0) \neq 0 f(n)(x0)=0。因此, x 0 x_0 x0 是 f ′ ( x ) f'(x) f′(x) 的 n − 1 n-1 n−1 重根。
21 渐近线
- 一条曲线在某点有水平渐近线:在该点不会有斜渐近线。
- 一条曲线在某点有垂直渐近线:在该点不会有斜渐近线。
- 一条曲线在某点有斜渐近线:在该点不会有垂直渐近线,也不会有水平渐近线。
22 定理
做证明题要在数轴上标出所有可能用到的点,确定区间 做证明题要在数轴上标出所有可能用到的点,确定区间 做证明题要在数轴上标出所有可能用到的点,确定区间
最值定理(常用于介值定理)
连续函数的介值定理
介值定理
函数平均值定理
积分中值定理
第一积分中值定理
二重积分中值定理
零点定理
费马定理
罗尔定理
可忽略:
罗尔定理是微积分中的一个重要定理,它可以看作是拉格朗日中值定理的特例。
罗尔定理可以这样理解:如果一个函数在某段区间的两端点处取相同的值,并且函数在这段区间内是平滑的(即连续且可导),那么函数在区间内部的某个点处必然存在一个水平切线(即导数为零的点)。换句话说,函数的图像在 [ a , b ] [a, b] [a,b] 上连接的两点是同一高度,并且在这段区间内是平滑的,那么图像在某个位置必定会达到一个极值(最大值或最小值),对应的导数为零。
几何上,罗尔定理的意思是:如果你画一条曲线,这条曲线从一个点开始,到达另一个与它同高的点,并且曲线在这两个点之间是光滑的,那么这条曲线必定有一个地方是水平的。这个水平点就是导数为零的点。
拉格朗日中值定理
可忽略:
拉格朗日中值定理是微积分中的一个基本定理,用来描述函数在一个区间上的平均变化率。
拉格朗日中值定理的几何意义是:在曲线 y = f ( x ) y = f(x) y=f(x) 上,存在一个点 c c c,其切线的斜率(即导数 f ′ ( c ) f'(c) f′(c))等于函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上的平均变化率。
换句话说,曲线上存在一个点 c c c,在这个点上,函数的瞬时变化率与整体平均变化率相等。
从几何上看,拉格朗日中值定理可以理解为:对于在区间 [ a , b ] [a, b] [a,b] 上的连续、可导函数 f ( x ) f(x) f(x),其图像上的某点 c c c 处的切线与通过点 ( a , f ( a ) ) (a, f(a)) (a,f(a)) 和 ( b , f ( b ) ) (b, f(b)) (b,f(b)) 的割线平行。这意味着在 c c c 点处的切线斜率与割线的斜率相等。
假设函数 f ( x ) f(x) f(x) 表示某物体的位移随时间的变化,则 f ( b ) − f ( a ) b − a \frac{f(b) - f(a)}{b - a} b−af(b)−f(a) 表示物体在时间区间 [ a , b ] [a, b] [a,b] 上的平均速度,而 f ′ ( c ) f'(c) f′(c) 则是物体在某一时刻 c c c 的瞬时速度。拉格朗日中值定理告诉我们,在这段时间内,必然存在某一时刻 c c c,使得瞬时速度等于平均速度。
拉格朗日中值定理在多个领域中都有应用,比如:
- 物理学:可以用来证明在某段时间内,物体的瞬时速度等于平均速度。
- 经济学:可以分析商品价格或公司收益的变化,判断是否在某个时刻达到了特定的增长速度。
- 误差分析:在数值分析中,用来估算函数的误差,比如泰勒级数中的截断误差。
柯西中值定理
可忽略:
柯西中值定理是微积分中的一个重要定理,它可以看作是拉格朗日中值定理的推广。
柯西中值定理可以被理解为两个函数的拉格朗日中值定理的综合版。如果我们将拉格朗日中值定理看作是一个函数相对于 x x x 轴的平均变化率,那么柯西中值定理就是在考察一个函数相对于另一个函数的平均变化率。
简单来说,柯西中值定理表明,存在某个点 c c c,使得在这个点上,函数 f ( x ) f(x) f(x) 的瞬时变化率相对于 g ( x ) g(x) g(x) 的瞬时变化率等于它们在整个区间上的平均变化率之比。
从几何上看,如果我们画出两个函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 的图像,并且在区间 [ a , b ] [a, b] [a,b] 上找到某个点 c c c,使得在这个点处的切线斜率比(即导数之比)等于两个函数在该区间上的总变化量之比,那么这个点就是柯西中值定理中提到的点 c c c。
泰勒定理
可忽略:
泰勒定理是微积分中的一个重要定理,它提供了一种用多项式来近似光滑函数的方法。
泰勒定理表明,给定一个光滑函数 f ( x ) f(x) f(x),可以用它在某个点 a a a 处的函数值及其导数信息来构造一个多项式,该多项式在 a a a 点附近非常接近原函数的值。泰勒展开式可以看作是函数在点 a a a 处的“局部逼近”。
当考虑越来越多的导数项时,泰勒多项式能够越来越精确地逼近原函数。在极限情况下(即考虑所有的导数),泰勒多项式能够完全还原原函数,这就是所谓的泰勒级数
确定辅助函数
23 要求方程的根、函数的零点
推广的零点定理
罗尔原话
实系数奇次方程至少有一个实根
用导数工具研究函数性态
辅助函数求导后带参数k,求根的个数
辅助函数求导后不带参数k,求根的个数
24 微分不等式问题
用单调性
用最值
用凹凸性
用拉格朗日中值定理
用柯西中值定理
用带拉格朗日余项的泰勒公式
若f(x)有二阶导且g(x)中含f(x),要比g(x)与f(x)的大小
25 积分不等式问题
用函数性态
处理被积函数(利用常见不等式)
26 物理应用
位移、时间、速度、加速度
相关变化率
位移大小与总路程(在给定时间内对速度积分)
变力沿直线做功(在给定范围内对力函数积分)
抽水做功
静水压力
万有引力公式
万有引力公式描述了两个质量之间的引力作用,其数学表达式为:
F = G m 1 m 2 r 2 F = G \frac{m_1 m_2}{r^2} F=Gr2m1m2
这里:
- ( F F F ) 是两个物体之间的引力;
- ( G G G ) 是引力常数;
- ( m 1 m_1 m1 ) 和 ( m 2 m_2 m2 ) 是两个物体的质量;
- ( r r r ) 是两个物体质心之间的距离。
长度
面积
体积
总质量
重心(质心)与形心
转动惯量(距离的平方;对哪个轴,则无哪个变量;对原点则都有)
引力(加Gm,对哪个轴就减哪个点,分母统一为距离的三次方)
G
为引力常数
G为引力常数
G为引力常数
27 积分、函数、导数(“祖孙三代”):奇偶性、周期性、间断点处的可导性
28 积分比大小
29 反常积分判敛散性
30 伽马函数
31 定积分
定积分定义
对称区间上的积分问题(偶倍奇零)
周期性下的积分问题:27点有补充
区间再现下的积分问题
lnsinx在0到π/2上的积分
华里士公式(点火公式)
需要记忆的一些定积分结果
32 几何应用
面积
旋转曲面的面积(侧面积\表面积)
弧长【仅比表面积公式少2πy】
旋转体体积
33 多元函数微分学
定义
对比一元函数微分的定义:
偏导数
对于二元函数 f ( x , y ) f(x, y) f(x,y),在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) 处关于 x x x 的偏导数定义为:
f x ′ ( x 0 , y 0 ) = lim Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = x − x 0 = Δ x lim x → x 0 f ( x , y 0 ) − f ( x 0 , y 0 ) x − x 0 f'_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} \overset{x-x_0=\Delta x}{=} \lim_{x \to x_0}\frac{f(x,y_0)-f(x_0,y_0)}{x-x_0} fx′(x0,y0)=Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)=x−x0=Δxx→x0limx−x0f(x,y0)−f(x0,y0)
这表示当 y y y 保持不变时,函数 f f f 在 x 0 x_0 x0 处随 x x x 的变化率。是 z = f ( x , y ) z=f(x,y) z=f(x,y)在 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)处的切线对 x x x轴的斜率
同理,在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) 处关于 y y y 的偏导数定义为:
f
y
′
(
x
0
,
y
0
)
=
lim
Δ
y
→
0
f
(
x
0
,
y
0
+
Δ
y
)
−
f
(
x
0
,
y
0
)
Δ
y
=
y
−
y
0
=
Δ
y
lim
y
→
y
0
f
(
x
0
,
y
)
−
f
(
x
0
,
y
0
)
y
−
y
0
f'_y(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0+\Delta y) - f(x_0, y_0)}{\Delta y}\overset{y-y_0=\Delta y}{=} \lim_{y \to y_0}\frac{f(x_0,y)-f(x_0,y_0)}{y-y_0}
fy′(x0,y0)=Δy→0limΔyf(x0,y0+Δy)−f(x0,y0)=y−y0=Δyy→y0limy−y0f(x0,y)−f(x0,y0)
这表示当
x
x
x 保持不变时,函数
f
f
f 在
y
0
y_0
y0 处随
y
y
y 的变化率。是
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y)在
(
x
0
,
y
0
,
z
0
)
(x_0,y_0,z_0)
(x0,y0,z0)处的切线对
y
y
y轴的斜率
全微分
二元函数
z
=
f
(
x
,
y
)
z=f(x, y)
z=f(x,y) 在点
(
x
0
,
y
0
)
(x_0, y_0)
(x0,y0) 的全微分表示
z
z
z 在该点附近的线性近似。全微分的表达式为:
d
z
=
f
x
′
(
x
0
,
y
0
)
d
x
+
f
y
′
(
x
0
,
y
0
)
d
y
dz = f'_x(x_0, y_0)dx + f'_y(x_0, y_0)dy
dz=fx′(x0,y0)dx+fy′(x0,y0)dy
其中
d
x
dx
dx 和
d
y
dy
dy 分别表示
x
x
x 和
y
y
y 的小变化量。
f ( x , y ) 在 P 处二阶偏导存在只能推在 P 处一阶偏导存在 f(x,y)在P处二阶偏导存在只能推在P处一阶偏导存在 f(x,y)在P处二阶偏导存在只能推在P处一阶偏导存在
复合函数求导
隐函数求导
方程组情形
多元函数的极、最值
偏微分方程与方向导数的关系
34 二重积分
定义
区域可加性
交换积分次序
对称性(偶倍奇零)
轮换对称性
极坐标形式
35 微分方程
齐次型
一阶线性微分方程
伯努利方程
二阶可降阶微分方程
二阶常系数线性微分方程
二阶线性非齐次微分方程
微分算子法求特解
欧拉方程
n阶常系数齐次线性微分方程
微分方程的应用
36 无穷级数
常级数结论
幂级数结论
正项级数审敛法
交错级数审敛法
常用结论
加括号是提高收敛性的,若加括号都发散,则原级数必发散
加括号是提高收敛性的,若加括号都发散,则原级数必发散
加括号是提高收敛性的,若加括号都发散,则原级数必发散
幂级数
阿贝尔定理
幂级数展开问题
傅里叶级数
37 向量代数与空间解析几何
设 a = ( a x , a y , a z ) , b = ( b x , b y , b z ) , c = ( c x , c y , c z ) ,(其中 a , b , c 均为非 0 向量) 设a=(a_x,a_y,a_z),b=(b_x,b_y,b_z),c=(c_x,c_y,c_z),(其中a,b,c均为非0向量) 设a=(ax,ay,az),b=(bx,by,bz),c=(cx,cy,cz),(其中a,b,c均为非0向量)
向量的模
单位向量
模长为 1 的向量 模长为1的向量 模长为1的向量
单位化
数量积【点乘】
参与运算的是向量,结果是一个数
参与运算的是向量,结果是一个数
参与运算的是向量,结果是一个数
向量积(外积、叉积)【叉乘】
参与运算的是向量,结果还是向量
参与运算的是向量,结果还是向量
参与运算的是向量,结果还是向量
混合积
方向角与方向余弦
平面(平面的法向量垂直于平面,xoy面的法向量就是z轴)
直线
点到直线与点到平面的距离公式
直线与直线的关系
平面与平面的关系
平面与直线的关系
空间曲线的切线与法平面
空间曲面的法线与切平面
空间曲线在坐标面上的投影
求直线在平面上的投影方程
空间曲线绕直线旋转得旋转曲面
38 梯度(某点的一阶偏导,所得是向量)
39 方向导数(有±两个方向,算出来是个数)
补充:
40 方向导数与梯度的关系(梯度的模为方向导数的最大值)
梯度方向即函数增长速度最快的方向或方向导数取最大值的方向 梯度方向即函数增长速度最快的方向或方向导数取最大值的方向 梯度方向即函数增长速度最快的方向或方向导数取最大值的方向
41 散度(div)【一阶偏导相加】
42 旋度(rot)【三阶行列式一阶偏导】
43 求曲面Σ与直线L
44 求轨迹方程
45 三重积分(算体积)
普通对称性(偶倍奇零)
轮换对称性(把x,y,z对调,Ω不变就可互换)
常规计算方法
柱面坐标系(极坐标下二重积分与定积分)
球面坐标系
46 第一型曲线积分(曲线方程L可代入)
普通对称性(偶倍奇零)
轮换对称性(把x,y,z对调,L不变就可互换)
常规计算:一投二代三计算
47 第一型曲面积分(曲面方程Σ可代入)
普通对称性(偶倍奇零)
轮换对称性(把x,y,z对调,Σ不变就可互换)
常规计算:一投二代三计算
48 第二型曲线积分(有向曲线,曲线方程不可代入)
特殊对称性(奇倍偶零);没有轮换对称性
常规计算:一投二代三计算
斯托克斯公式:化为第二型曲面积分或第一型曲线积分
格林公式
积分与路径无关
49 第二型曲面积分(有向曲面,曲面方程不可代入)
特殊对称性(奇倍偶零);没有轮换对称性
常规计算:一投二代三计算(化为二重积分)
若题目明确制定曲面的前侧、上侧、右侧且这些方向都是指向体积外侧,那么在应用高斯公式或将曲面积分转换为平面积分时,不需要添加负号。
转换投影法(先写投影域)
不能投成一条线来算! 不能投成一条线来算! 不能投成一条线来算!
高斯公式
50 两类曲面积分的关系