(等价无穷小与幂级数)泰勒公式

在这里插入图片描述

在这里插入图片描述

泰勒公式的麦克劳林展开式与等价无穷小

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + . . . + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\frac{f''(0)}{2}x^2+\frac{f'''(0)}{3!}x^3+...+\frac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f(0)x+2f′′(0)x2+3!f′′′(0)x3+...+n!f(n)(0)xn+o(xn)


x → 0 x→0 x0

s i n x = x − 1 6 x 3 + o ( x 3 ) sinx=x-\frac{1}{6}x^3+o(x^3) sinx=x61x3+o(x3)
s i n x sinx sinx ~ x x x
s i n x − x sinx-x sinxx ~ − 1 6 x 3 -\frac{1}{6}x^3 61x3
x − s i n x x-sinx xsinx ~ 1 6 x 3 \frac{1}{6}x^3 61x3


a r c s i n x = x + 1 6 x 3 + o ( x 3 ) arcsinx=x+\frac{1}{6}x^3+o(x^3) arcsinx=x+61x3+o(x3)
a r c s i n x arcsinx arcsinx ~ x x x


t a n x = x + 1 3 x 3 + o ( x 3 ) tanx=x+\frac{1}{3}x^3+o(x^3) tanx=x+31x3+o(x3)
t a n x − x tanx-x tanxx ~ 1 3 x 3 \frac{1}{3}x^3 31x3
x − t a n x x-tanx xtanx ~ − 1 3 x 3 -\frac{1}{3}x^3 31x3


a r c t a n x = x − 1 3 x 3 + o ( x 3 ) arctanx=x-\frac{1}{3}x^3+o(x^3) arctanx=x31x3+o(x3)
a r c t a n x arctanx arctanx ~ x x x
x − a r c t a n x x-arctanx xarctanx ~ 1 3 x 3 \frac{1}{3}x^3 31x3


c o s x = 1 − 1 2 x 2 + 1 4 ! x 4 + o ( x 4 ) cosx=1-\frac{1}{2}x^2+\frac{1}{4!}x^4+o(x^4) cosx=121x2+4!1x4+o(x4)
1 − c o s x 1-cosx 1cosx ~ 1 2 x 2 \frac{1}{2}x^2 21x2


l n ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + o ( x 3 ) ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3+o(x^3) ln(1+x)=x21x2+31x3+o(x3)
l n ( 1 + x ) ln(1+x) ln(1+x) ~ x x x
l n ( 1 + x ) − x ln(1+x)-x ln(1+x)x ~ − 1 2 x 2 -\frac{1}{2}x^2 21x2
x − l n ( 1 + x ) x-ln(1+x) xln(1+x) ~ 1 2 x 2 \frac{1}{2}x^2 21x2


e x = 1 + x + 1 2 x 2 + o ( x 2 ) e^x=1+x+\frac{1}{2}x^2+o(x^2) ex=1+x+21x2+o(x2)
e x − 1 e^x-1 ex1 ~ x x x
e x − 1 − x e^x-1-x ex1x ~ 1 2 x 2 \frac{1}{2}x^2 21x2


( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 x 2 + o ( x 2 ) (1+x)^α=1+αx+\frac{α(α-1)}{2}x^2+o(x^2) (1+x)α=1+αx+2α(α1)x2+o(x2)
( 1 + x ) α − 1 (1+x)^α-1 (1+x)α1 ~ α x αx αx


l n ( x + 1 + x 2 ) = x − 1 6 x 3 + o ( x 3 ) ln(x+\sqrt{1+x^2})=x-\frac{1}{6}x^3+o(x^3) ln(x+1+x2 )=x61x3+o(x3)


推广:
t a n x − s i n x = x + 1 3 x 3 − x + 1 6 x 3 + o ( x 3 ) = 1 2 x 3 + o ( x 3 ) tanx-sinx=x+\frac{1}{3}x^3-x+\frac{1}{6}x^3+o(x^3)=\frac{1}{2}x^3+o(x^3) tanxsinx=x+31x3x+61x3+o(x3)=21x3+o(x3)
t a n x − s i n x tanx-sinx tanxsinx ~ 1 2 x 3 \frac{1}{2}x^3 21x3
同理: s i n x − t a n x sinx-tanx sinxtanx ~ − 1 2 x 3 -\frac{1}{2}x^3 21x3


需要熟记的幂级数(除后三个,都常用)

在这里插入图片描述

补充:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

果子当夜宵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值