泰勒公式的麦克劳林展开式与等价无穷小
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + . . . + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\frac{f''(0)}{2}x^2+\frac{f'''(0)}{3!}x^3+...+\frac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f′(0)x+2f′′(0)x2+3!f′′′(0)x3+...+n!f(n)(0)xn+o(xn)
x → 0 x→0 x→0
s
i
n
x
=
x
−
1
6
x
3
+
o
(
x
3
)
sinx=x-\frac{1}{6}x^3+o(x^3)
sinx=x−61x3+o(x3)
s
i
n
x
sinx
sinx ~
x
x
x
s
i
n
x
−
x
sinx-x
sinx−x ~
−
1
6
x
3
-\frac{1}{6}x^3
−61x3
x
−
s
i
n
x
x-sinx
x−sinx ~
1
6
x
3
\frac{1}{6}x^3
61x3
a
r
c
s
i
n
x
=
x
+
1
6
x
3
+
o
(
x
3
)
arcsinx=x+\frac{1}{6}x^3+o(x^3)
arcsinx=x+61x3+o(x3)
a
r
c
s
i
n
x
arcsinx
arcsinx ~
x
x
x
t
a
n
x
=
x
+
1
3
x
3
+
o
(
x
3
)
tanx=x+\frac{1}{3}x^3+o(x^3)
tanx=x+31x3+o(x3)
t
a
n
x
−
x
tanx-x
tanx−x ~
1
3
x
3
\frac{1}{3}x^3
31x3
x
−
t
a
n
x
x-tanx
x−tanx ~
−
1
3
x
3
-\frac{1}{3}x^3
−31x3
a
r
c
t
a
n
x
=
x
−
1
3
x
3
+
o
(
x
3
)
arctanx=x-\frac{1}{3}x^3+o(x^3)
arctanx=x−31x3+o(x3)
a
r
c
t
a
n
x
arctanx
arctanx ~
x
x
x
x
−
a
r
c
t
a
n
x
x-arctanx
x−arctanx ~
1
3
x
3
\frac{1}{3}x^3
31x3
c
o
s
x
=
1
−
1
2
x
2
+
1
4
!
x
4
+
o
(
x
4
)
cosx=1-\frac{1}{2}x^2+\frac{1}{4!}x^4+o(x^4)
cosx=1−21x2+4!1x4+o(x4)
1
−
c
o
s
x
1-cosx
1−cosx ~
1
2
x
2
\frac{1}{2}x^2
21x2
l
n
(
1
+
x
)
=
x
−
1
2
x
2
+
1
3
x
3
+
o
(
x
3
)
ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3+o(x^3)
ln(1+x)=x−21x2+31x3+o(x3)
l
n
(
1
+
x
)
ln(1+x)
ln(1+x) ~
x
x
x
l
n
(
1
+
x
)
−
x
ln(1+x)-x
ln(1+x)−x ~
−
1
2
x
2
-\frac{1}{2}x^2
−21x2
x
−
l
n
(
1
+
x
)
x-ln(1+x)
x−ln(1+x) ~
1
2
x
2
\frac{1}{2}x^2
21x2
e
x
=
1
+
x
+
1
2
x
2
+
o
(
x
2
)
e^x=1+x+\frac{1}{2}x^2+o(x^2)
ex=1+x+21x2+o(x2)
e
x
−
1
e^x-1
ex−1 ~
x
x
x
e
x
−
1
−
x
e^x-1-x
ex−1−x ~
1
2
x
2
\frac{1}{2}x^2
21x2
(
1
+
x
)
α
=
1
+
α
x
+
α
(
α
−
1
)
2
x
2
+
o
(
x
2
)
(1+x)^α=1+αx+\frac{α(α-1)}{2}x^2+o(x^2)
(1+x)α=1+αx+2α(α−1)x2+o(x2)
(
1
+
x
)
α
−
1
(1+x)^α-1
(1+x)α−1 ~
α
x
αx
αx
l n ( x + 1 + x 2 ) = x − 1 6 x 3 + o ( x 3 ) ln(x+\sqrt{1+x^2})=x-\frac{1}{6}x^3+o(x^3) ln(x+1+x2)=x−61x3+o(x3)
推广:
t
a
n
x
−
s
i
n
x
=
x
+
1
3
x
3
−
x
+
1
6
x
3
+
o
(
x
3
)
=
1
2
x
3
+
o
(
x
3
)
tanx-sinx=x+\frac{1}{3}x^3-x+\frac{1}{6}x^3+o(x^3)=\frac{1}{2}x^3+o(x^3)
tanx−sinx=x+31x3−x+61x3+o(x3)=21x3+o(x3)
t
a
n
x
−
s
i
n
x
tanx-sinx
tanx−sinx ~
1
2
x
3
\frac{1}{2}x^3
21x3
同理:
s
i
n
x
−
t
a
n
x
sinx-tanx
sinx−tanx ~
−
1
2
x
3
-\frac{1}{2}x^3
−21x3
需要熟记的幂级数(除后三个,都常用)
补充: