Spark

简述

是一种快速、通用、可扩展的大数据分析引擎。它是不断壮大的大数据分析解决方案家族中备受关注的明星成员,为分布式数据集的处理提供了一个有效框架,并以高效的方式处理分布式数据集。Spark集批处理、实时流处理、交互式查询、机器学习与图计算于一体,避免了多种运算场景下需要部署不同集群带来的资源浪费。目前,Spark社区也成为大数据领域和Apache软件基金会最活跃的项目之一,其活跃度甚至远超曾经只能望其项背的Hadoop。

Spark实现了一种分布式的内存抽象,称为弹性分布式数据集(Resilient Distributed Dataset,RDD )。它支持基于工作集的应用,同时具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。

Spark VS MapReduce

MapReduce存在的问题
一个 Hadoop job 通常都是这样的:
1)从 HDFS 读取输入数据;
2)在 Map 阶段使用用户定义的 mapper function, 然后把结果Spill到磁盘;
3)在 Reduce 阶段,从各个处于 Map 阶段的机器中读取 Map 计算的中间结果,使用用户定义的 reduce function, 通常最后把结果写回 HDFS;
Hadoop的问题在于,一个 Hadoop job 会进行多次磁盘读写,比如写入机器本地磁盘,或是写入分布式文件系统中(这个过程包含磁盘的读写以及网络传输)。考虑到磁盘读取比内存读取慢了几个数量级,所以像 Hadoop 这样高度依赖磁盘读写的架构就一定会有性能瓶颈。
此外,在实际应用中我们通常需要设计复杂算法处理海量数据, 而且不是一个 Hadoop job 可以完成的。比如机器学习领域,需要大量使用迭代的方法训练机器学习模型。而像 Hadoop 的基本模型就只包括了一个 Map 和 一个 Reduce 阶段,想要完成复杂运算就需要切分出无数单独的 Hadoop jobs, 而且每个 Hadoop job 都是磁盘读写大户,这就让 Hadoop 显得力不从心。
随着业界对大数据使用越来越深入,大家都呼唤一个更强大的处理框架,能够真正解决更多复杂的大数据问题。

Spark的优势
2009年,美国加州大学伯克利分校的 AMPLab 设计并开发了名叫 Spark 的大数据处理框架。真如其名,Spark 像燎原之火,迅猛占领大数据处理框架市场。

Spark 没有像 Hadoop 一样使用磁盘读写,而转用性能高得多的内存存储输入数据、处理中间结果、和存储最终结果。在大数据的场景中,很多计算都有循环往复的特点,像 Spark 这样允许在内存中缓存输入输出,上一个 job 的结果马上可以被下一个使用,性能自然要比 Hadoop MapReduce 好得多。
同样重要的是,Spark 提供了更多灵活可用的数据操作,比如 filter, join, 以及各种对 key value pair 的方便操作,甚至提供了一个通用接口,让用户根据需要开发定制的数据操作。
此外,Spark 本身作为平台也开发了 streaming 处理框架 spark streaming, SQL 处理框架 Dataframe, 机器学习库 MLlib, 和图处理库 GraphX. 如此强大,如此开放,基于 Spark 的操作,应有尽有。

Hadoop 的 MapReduce 为什么不使用内存存储?

是历史原因。当初 MapReduce 选择磁盘,除了要保证数据存储安全以外,更重要的是当时企业级数据中心购买大容量内存的成本非常高,选择基于内存的架构并不现实;现在 Spark 真的赶上了好时候,企业可以轻松部署多台大内存机器,内存大到可以装载所有要处理的数据。

RDD简介

RDD就是带有分区的集合类型
弹性分布式数据集(RDD),特点是可以并行操作,并且是容错的。有两种方法可以创建RDD:
1)执行Transform操作(变换操作),
2)读取外部存储系统的数据集,如HDFS,HBase,或任何与Hadoop有关的数据源。

RDD的依赖关系

RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。
1)窄依赖指的是每一个parent RDD的Partition最多被子RDD的一个Partition使用,如下图所示。
在这里插入图片描述
2)宽依赖指的是多个子RDD的Partition会依赖同一个parent RDD的Partition。
我们可以从不同类型的转换来进一步理解RDD的窄依赖和宽依赖的区别,如下图所示。
在这里插入图片描述
窄依赖
对于窄依赖操作,它们只是将Partition的数据根据转换的规则进行转化,并不涉及其他的处理,可以简单地认为只是将数据从一个形式转换到另一个形式。

所以对于窄依赖,并不会引入昂贵的Shuffle。所以执行效率非常高。如果整个DAG中存在多个连续的窄依赖,则可以将这些连续的窄依赖整合到一起连续执行,中间不执行shuffle 从而提高效率,这样的优化方式称之为流水线优化。
此外,针对窄依赖,如果子RDD某个分区数据丢失,只需要找到父RDD对应依赖的分区,恢复即可。但如果是宽依赖,当分区丢失时,最糟糕的情况是要重算所有父RDD的所有分区。

宽依赖
对于groupByKey这样的操作,子RDD的所有Partition(s)会依赖于parent RDD的所有Partition(s),子RDD的Partition是parent RDD的所有Partition Shuffle的结果。
Shuffle概述
spark中一旦遇到宽依赖就需要进行shuffle的操作,所谓的shuffle的操作的本质就是将数据汇总后重新分发的过程。
这个过程数据要汇总到一起,数据量可能很大所以不可避免的需要进行数据落磁盘的操作,会降低程序的性能,所以spark并不是完全内存不读写磁盘,只能说它尽力避免这样的过程来提高效率 。
spark中的shuffle,在早期的版本中,会产生多个临时文件,但是这种多临时文件的策略造成大量文件的同时的读写,磁盘的性能被分摊给多个文件,每个文件读写效率都不高,影响spark的执行效率。所以在后续的spark中(1.2.0之后的版本)的shuffle中,只会产生一个文件,并且数据会经过排序再附加索引信息,减少了文件的数量并通过排序索引的方式提升了性能。

Spark框架核心概念

1.RDD。弹性分布式数据集,是Spark最核心的数据结构。有分区机制,所以可以分布式进行处理。有容错机制,通过RDD之间的依赖关系来恢复数据。
2.依赖关系。RDD的依赖关系是通过各种Transformation(变换)来得到的。父RDD和子RDD之间的依赖关系分两种:①窄依赖 ②宽依赖
①针对窄依赖:父RDD的分区和子RDD的分区关系是:一对一
窄依赖不会发生Shuffle,执行效率高,spark框架底层会针对多个连续的窄依赖执行流水线优化,从而提高性能。例如 map flatMap等方法都是窄依赖方法
②针对宽依赖:父RDD的分区和子RDD的分区关系是:一对多
宽依赖会产生shuffle,会产生磁盘读写,无法优化。
3.DAG。有向无环图,当一整条RDD的依赖关系形成之后,就形成了一个DAG。一般来说,一个DAG,最后都至少会触发一个Action操作,触发执行。一个Action对应一个Job任务。
4.Stage。一个DAG会根据RDD之间的依赖关系进行Stage划分,流程是:以Action为基准,向前回溯,遇到宽依赖,就形成一个Stage。遇到窄依赖,则执行流水线优化(将多个连续的窄依赖放到一起执行)
5.task。任务。一个分区对应一个task。可以这样理解:一个Stage是一组Task的集合
6.RDD的Transformation(变换)操作:懒执行,并不会立即执行
7.RDD的Action(执行)操作:触发真正的执行

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值