视觉感知——【Transformer】BEVFormer: Learning BEV Representation from Multi-Camera Images

论文链接:BEVFormer: Learning Bird’s-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers(内附官方中文版)
提取码:z3un
源码:https://github.com/zhiqi-li/BEVFormer

文章侧重点

BEVFormer应用 Transformer 和时态结构,通过预定的网格状 BEV 查询向量从多摄像头输入中生成鸟瞰图 (BEV) 特征(图像特征转换为 BEV 特征)。
在这里插入图片描述

网络架构

  1. 采用两种backbone网络——ResNet101-DCN+VoVnet-99获取6个相机视角下的图像特征。 F t = F t i i = 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值