- 博客(17)
- 收藏
- 关注
原创 pycharm适配python 3.9的tensorflow安装
一、引言tensorflow是常用的图像处理模型框架,结合机器学习可作用于计算机视觉。运行环境:python 3.9,pycharm 2021.1安装版本:tensorflow 2.6.0,tensorflow-gpu 2.6.0二、安装1)python 3.9版本只能适配tensorflow 2.5以上版本,在已安装好python环境下,在cmd中输入pip install tensorflow 命令可以直接安装最新适配版本,输入pip install tensorflow-gpu命令可以直接安
2021-10-14 10:19:21 17875 1
原创 吴恩达机器学习课后习题(PCA算法)
一、PCA算法PCA算法为主成分分析算法,在数据集中找到“主成分”,可以用于压缩数据维度。二、实现PCA算法导入数据包。import numpy as npimport matplotlib.pyplot as pltfrom scipy.io import loadmat导入一个二维数据,并绘制散点图。data = loadmat("E:\\Pycharm\\workspace\\ex_Andrew\\ex7_Andrew\\ex7data1.mat")X = data['X'] #X
2021-08-20 16:24:35 1363
原创 吴恩达机器学习课后习题(K-Means算法)
一、K-Means算法无监督学习区别于监督学习算法,无监督学习中没有标签y,算法需要根据输入的数据集直接将其进行区分为各簇,每簇数据有其聚类中心。K-Means算法为一种无监督学习算法,可以实现算法自动区分数据集中不同簇。实现K-Means算法可以自己编写函数实现,也可以调用python中的KMeans包。二、实现K-Means算法1)编写函数实现K-Means算法导入运算包。import numpy as npimport pandas as pdimport seaborn as sb
2021-08-16 10:12:36 1054
原创 MySQL数据库的安装配置 + Navicat安装与使用 + eclipse中使用MySQL(2021.8)
MySQL的安装与配置下载与安装MySQL官网下载网址: https://www.mysql.com/cn/downloads/下载最下面的GPL的版本,为社区免费版本,本次安装为MySQL 8.0.26版本。下载windows版本适配的MySQL。下载450M左右的MSI,可以下载到非系统盘,安装时最好默认安装到C盘。在路径中找到刚下载的MSI文件,开始安装MySQL。第一页选择Custom自定义安装,next。下一页中在product中选中MySQL Server的最子项,点击绿
2021-08-14 17:20:57 2789
原创 吴恩达机器学习课后习题(支持向量机)
一、支持向量机支持向量机(SVM)为一种机器学习方法,在逻辑回归的基础上修改代价公式h(x)为coost(X*theta.T),可用于画决策曲线。二、实现SVM1)线性SVM导入数据包。import numpy as npimport pandas as pdfrom scipy.io import loadmatimport matplotlib.pyplot as plt先实验数据集ex6data1.mat,此数据集X每个训练样本有两个特征X1,X2,y为1/0。raw_data
2021-08-10 17:14:10 1110
原创 吴恩达机器学习课后习题(学习曲线)
一、学习曲线实现回归算法后,需要根据拟合数据的情况进行修改算法,增加训练集的数量、增加训练集特征、或改变lambda的大小。本次使用线性回归对计算出的函数曲线进行尽力拟合。二、实现学习曲线导入数据包。import numpy as npimport pandas as pdimport scipy.io as sioimport scipy.optimize as optimport matplotlib.pyplot as plt导入数据,并赋值各个变量为数据集,将其初始化。画出散点
2021-08-03 16:43:24 1217 1
原创 python机器学习minimize函数参数介绍及作用
一、问题介绍在初学机器学习时,在吴恩达机器学习课后作业中经常使用到高级优化算法,计算theta值会更为便捷,在python中,可以使用scipy.optimize包中的minimize函数直接计算得到所求的theta参数。二、查看介绍在pycharm IDE中,可以直接ctrl+b直接查看minimize函数的各项参数。以及一大堆看见就不想多读的内容。def minimize(fun, x0, args=(), method=None, jac=None, hess=None,
2021-08-02 20:50:26 11429
原创 吴恩达机器学习课后习题(神经网络算法)
一、神经网络使用神经网络算法识别数据集中的手写数字,数据集有数字集与初始theta值。步骤:构建神经网络模型——初始化向量——向前传播算法——计算代价函数——反向传播,计算偏导数项——(梯度检验)——高级优化算法下降梯度得到预测值theta——对比预测数据得出准确率。二、实现神经网络导入数据包。import numpy as npimport matplotlib.pyplot as pltimport matplotlibfrom scipy.io import loadmatfrom s
2021-08-01 09:10:25 954
原创 吴恩达机器学习课后习题(前馈神经网络)
一、神经网络多分类问题时,若特征变量的次数过高,项数过多,用逻辑回归会很慢,此时需要用到神经网络。还是区分0-9的十个数字的问题,若已给定神经网络中的theta矩阵(需要用反向传播算法得出),实现前馈神经网络,理解神经网络的作用。题目已给出a(1)为第一层输入层数据,有400个神经元代表每个数字的图像(不加偏置值);a(2)为隐藏层,有25个神经元(不加偏置值);a(3)为输出层‘,又10个神经元,以10个(0/1)值的向量表示;theta1为第一层到第二层的参数矩阵(25,401);theta
2021-07-28 11:41:47 1001
原创 吴恩达机器学习课后习题(多分类逻辑回归)
一、多分类逻辑回归需要构建分类器,每次分类时,将多类分为第i类与非第i类两种类别,再利用逻辑回归的高级优化算法进行计算。二、实现多分类逻辑回归导入多个包,使用的数据集为.matlab格式,需要用到loadmat包读取mat文件。import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport matplotlibfrom scipy.io import loadmatfrom sklearn.metrics
2021-07-28 09:50:25 777
原创 吴恩达机器学习课后习题(正则化逻辑回归)
一、正则化变量过多或过少时,都会出现拟合偏差的问题(欠拟合、过度拟合),当出现过度拟合情况时,可以使用正则化的办法,保留所有变量,在假设函数中加入惩罚项,使theta[i]的值骤降接近于0.二、实现正则化逻辑回归导入数据包。import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport scipy.optimize as opt #提供高级函数库数据集处理,并画出散点图,初步观测此散点图的拟合曲线为圆。
2021-07-26 11:33:39 683
原创 吴恩达机器学习课后习题(逻辑回归)
一、逻辑回归逻辑回归主要用于分类问题,有正负值用0与1表示,根据数据集计算出参数向量,并画出决策边界,计算预测值准确率,并用可以对新数据集进行预测。二、实现逻辑回归导入数据包,实现逻辑回归时,可以使用梯度下降算法,也可以直接使用高级优化算法(共轭梯度法),更加简便。使用高级优化算法可以自动选择学习率。import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport scipy.optimize as opt #
2021-07-26 10:46:52 1196 5
原创 吴恩达机器学习课后习题(线性回归二)
一、线性回归当训练集中每个训练样本的属性有多个时(x有多列),使用梯度下降算法进行拟合数据,此时用到X矩阵与theta向量相乘作为sigmoid函数的参数二、实现线性回归导入两种数据包,由于多个特征的数值相差较大,需要收敛时间较长,且容易出现震荡,故将data数据集中的数据进行特征缩放(均质化归一)path = "E:\\pyCharm\\workspace\\ex1_Andrew\\ex2data2.txt"data = pd.read_csv(path,header=None,names=['
2021-07-26 09:17:39 479
原创 吴恩达机器学习课后习题(线性回归一)
一、线性回归实现简单线性回归,使用梯度下降算法对数据进行拟合,最终得出拟合的线性图像,并可以使用其他数据集进行预测。使用python 3.9,pycharm编译器二、实现线性回归导入三种数据包import numpy as np #Numpy包内部集成了大量的数学函数库,np是给numpy起了个别名import pandas as pd # 分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算)import matplotlib.pyplot as plt #绘图包从文件
2021-07-25 16:56:41 411
原创 研一学生初学机器学习
一、序言 2021年9月份将继续上研究生,于2021年7月初开始接触学习机器学习,购买了西瓜书、南瓜书、神经网络、李航统计学习四本书,入门使用B站吴恩达机器学习视频,使用平板记笔记,在笔记本上完成课后作业练习。7月25日初步萌生写博客以记录机器学习过程中的学习经验与遇到的问题与解决方案,主要用于记录自己的学习过程并可以随时进行回顾,本贴是人生中的第一篇博客,主要想感受一下写博客的魅力,希望可以和社区论坛中的大佬和小白们一起讨论一起进步,也希望自己可以坚持写博客的习惯,如有错误请不吝赐教与...
2021-07-25 12:32:37 298 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人