一、PCA算法
PCA算法为主成分分析算法,在数据集中找到“主成分”,可以用于压缩数据维度。
二、实现PCA算法
导入数据包。
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import loadmat
导入一个二维数据,并绘制散点图。
data = loadmat("E:\\Pycharm\\workspace\\ex_Andrew\\ex7_Andrew\\ex7data1.mat")
X = data['X'] #X为(50,2)
fig,ax = plt.subplots(figsize=(8,6))
ax.scatter(X[:,0],X[:,1],c='b')
构造pca算法,并使用二维数据集进行模拟PCA,计算出了U,S,V三个矩阵。
def pca(X):
X = (X-X