吴恩达机器学习课后习题(PCA算法)

本文介绍了PCA(主成分分析)算法,详细阐述了PCA如何用于数据降维,并通过Python实现PCA算法,展示了二维数据降维后得到的直线散点图。此外,还应用PCA处理人脸图像,探讨了不同压缩比例下图像的清晰度。
摘要由CSDN通过智能技术生成

一、PCA算法

PCA算法为主成分分析算法,在数据集中找到“主成分”,可以用于压缩数据维度。

二、实现PCA算法

导入数据包。

import numpy as np
import matplotlib.pyplot as plt
from scipy.io import loadmat

导入一个二维数据,并绘制散点图。

data = loadmat("E:\\Pycharm\\workspace\\ex_Andrew\\ex7_Andrew\\ex7data1.mat")
X = data['X'] #X为(50,2)
fig,ax = plt.subplots(figsize=(8,6))
ax.scatter(X[:,0],X[:,1],c='b')

构造pca算法,并使用二维数据集进行模拟PCA,计算出了U,S,V三个矩阵。

def pca(X):
    X = (X-X
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值