随着经济的快速发展和人才市场的不断扩大,招聘信息成为企业招聘和人才流动的重要载体。如何从海量招聘信息中挖掘有价值的信息,为企业招聘和人才市场分析提供决策支持,成为当前研究的热点问题。然而,招聘信息数据具有数据量大、结构复杂、动态更新等特点,使得传统的数据处理方法难以满足需求。Spark作为大数据处理领域的领先技术,具有强大的数据处理能力,能够满足对大规模招聘信息进行分析和处理的需求。因此,本文提出基于Spark的对招聘信息的分析与设计,对招聘信息进行深入分析与处理。
本文首先阐述了系统的研究背景和意义;然后对系统进行了可行性、功能性等分析;接着详细介绍了系统的设计原理和实现细节,包括数据库设计、系统架构、主要功能模块等;最后对系统进行了部署和测试。通过本系统的的成功实施,不仅为基于Spark的对招聘信息的分析与设计的系统管理提供了有力支持,也为其他类似系统的设计和实现提供了有益的参考。
关键词:招聘信息、数据处理、Spark
Abstract
With the rapid development of the economy and the continuous expansion of the talent market, recruitment information has become an important carrier for enterprise recruitment and talent flow. How to mine valuable information from massive recruitment information and provide decision support for enterprise recruitment and talent market analysis has become a hot research topic. However, recruitment information data has the characteristics of large data volume, complex structure, and dynamic updates, making traditional data processing methods difficult to meet the needs. Spark, as a leading technology in the field of big data processing, has strong data processing capabilities and can meet the needs of analyzing and processing large-scale recruitment information. Therefore, this article proposes an analysis and design of recruitment information based on Spark, and conducts in-depth analysis and processing of recruitment information.
This article first elaborates on the research background and significance of the system; Then, feasibility and functionality analyses were conducted on the system; Then, the design principles and implementation details of the system were introduced in detail, including database design, system architecture, main functional modules, etc; Finally, the system was deployed and tested. The successful implementation of this system not only provides strong support for the management of Spark based recruitment information analysis and design systems, but also provides useful references for the design and implementation of other similar systems.
Keywords: recruitment information, data processing, Spark
1 绪论
1.1 研究背景
随着互联网技术的不断发展,招聘信息逐渐从传统的报纸、杂志转向在线平台。如今,招聘网站和社交媒体已经成为求职者和招聘者的重要交流渠道。在这个背景下,如何有效地处理和分析海量的招聘信息,从而为求职者提供更精确的职位推荐和为企业提供更优质的招聘服务,成为了一个值得研究的问题。在这样的背景下,基于Spark的对招聘信息的分析与设计的研究应运而生。Spark作为一款大数据处理框架,具有分布式计算、快速处理和分析等特点,使其成为处理招聘信息数据的理想工具。
研究基于Spark的对招聘信息的分析与设计具有重要的意义。
首先,可以提高招聘效率:通过对大量招聘信息进行分析,可以发现其中的模式和趋势,从而为招聘方提供更有针对性的招聘策略。这种智能化的招聘策略可以大大提高招聘效率,减少无效的招聘时间和成本。
其次,可以优化人才筛选:通过Spark对招聘信息的大数据分析,可以更好地理解候选人的需求和市场趋势,帮助招聘方更准确地评估候选人的匹配度,优化人才筛选过程,降低招聘风险。
再次,有助于增强企业竞争力:通过对招聘信息的智能分析和设计,可以帮助企业更好地理解市场需求和人才流动趋势,从而制定更有针对性的招聘策略,提高企业在人才市场上的竞争力。
最后,有助于推动招聘技术创新:基于Spark的大数据分析技术为招聘带来了新的可能性,使招聘不再局限于传统的招聘渠道和方法。这种技术可以帮助企业实现更高效、精准的招聘,推动招聘技术的不断创新和发展。
1.3论文结构与章节安排
论文将分层次经行编排,除去论文摘要致谢文献参考部分,论文正文部分主要架构如下:
第一章:绪论。主要介绍了课题研究的背景,研究意义和论文结构与章节安排。
第二章:系统分析。主要从系统的用户、功能等方面进行需求分析。
第三章:系统总体设计。主要对系统框架、系统功能模块、数据库进行功能设计。
第四章:系统详细设计与实现。主要介绍了系统框架搭建、系统界面的实现。
第五章:系统测试。主要对系统的部分界面进行测试并对主要功能进行测试。
2 系统分析
系统分析是开发一个项目的先决条件,通过系统分析可以很好的了解系统的主体用户的基本需求情况,同时这也是项目的开发的原因。进而对系统开发进行可行性分析,通常包括技术可行性、经济可行性等,可行性分析同时也是从项目整体角度进行的分析。然后就是对项目的具体需求进行分析,分析的手段一般都是通过用户的用例图来实现。下面是详细的介绍。
2.1 可行性分析
(1)技术可行性:
Spark具有强大的分布式计算能力,可以轻松处理海量数据。在招聘信息分析中,Spark可以快速对数以百万计的招聘信息进行处理和分析,提取出有价值的数据,为招聘企业提供更全面、更准确的人才市场信息。Spark采用内存计算的方式,可以显著提高数据处理的效率。在招聘信息分析中,Spark可以将数据缓存在内存中,减少磁盘I/O操作,从而提高数据处理速度,缩短分析周期。
此外Spark提供了丰富的数据处理框架,如SQL、Machine Learning、GraphX等,可以满足招聘信息分析中的各种需求。例如,通过SQL框架可以快速进行数据查询和统计;通过Machine Learning框架可以进行招聘信息的关键字提取、职位匹配度计算等;通过GraphX框架可以进行招聘信息的关系挖掘,发现潜在的人才需求和人才供应。
因此,从技术层面来说是可行的。
(2)经济可行性:
基于Spark的分析设计具有很高的性价比。虽然初期的硬件投入需要一些成本,但长远来看,Spark的高效性和扩展性可以大大降低数据处理和分析的成本。此外,通过Spark进行数据分析,可以为企业提供更精准的招聘策略,从而提高招聘效率和降低招聘成本。因此,从经济层面分析是可行的。
- 操作可行性:
Spark提供了友好的用户界面和丰富的API,使得即使是非技术人员也能快速上手。这为企业内部的数据分析师和工程师提供了极大的便利。因此,从操作角度分析是可行的。
- 市场可行性分析:
我国招聘市场规模巨大,线上招聘市场占比逐年上升,为基于Spark的招聘信息分析与设计提供了广阔的市场空间。因此,从市场需求角度分析是可行的。
系统流程是用一些特定的符合和线条来进行演示用户在使用系统时的过程,在进行系统分析的时候,业务流程可以帮助开发人员更好的理解业务,发现错误,完善系统。
2.2.1 数据新增流程
用户成功登入系统后就能够实现增加数据的操作,增加数据的编号由系统生成,用户不能随意填写,除了编号以外,其他增加信息用户自己填写,填写后的信息经过系统验证,验证通过后即可完成数据新增,数据新增的流程图如下图2-1所示。
图2-1 数据新增流程图
2.2.2 数据删除流程
如果系统里面存在一些没有用的数据,相关的管理人员还可以对这些数据进行删除,数据删除时流程图如下图2-2所示。
图2-2 数据删除流程图
按照基于Spark的对招聘信息的分析与设计系统的角色,主要包括求职者用户、企业用户和管理员这三大功能模块,各模块功能内容如下:
- 求职者用户功能:
(1)首页:用户可以查看首页展示的轮播图、招聘资讯、招聘推荐等信息。
(2)注册登录:访客可以通过注册成为系统用户,注册后可以用账号密码登录系统。
(3)招聘公告:用户可以查看系统发布的招聘公告信息。
(4)招聘资讯:用户可以查看招聘资讯列表中某一资讯信息详情并进行点赞、收藏和发表评论操作。
(5)招聘信息:用户可以查看招聘信息列表中某一招聘信息详情并进行点赞、收藏和发表评论,可进行在线沟通和投递简历。
(6)我的:用户可以修改个人信息和登录密码,可以查看和管理个人中心中的求职者简历、在线沟通和收藏信息。
2. 企业用户功能:
(1)招聘数据管理:用户可以对企业招聘数据信息进行添加、重置和删除操作。
(2)招聘信息管理:用户可以对招聘信息进行添加、重置和删除操作。
(3)求职者简历管理:用户可以查看求职者简历列表中某一求职者信息详情,可以在线下载查阅简历并对对求职者简历进行审核和回复。
(4)在线沟通管理:用户可以查看在线沟通列表中某一信息详情并进行回复,可以对在线沟通信息进行重置和删除操作
(5)我的:用户可以修改个人信息和登录密码。
3. 管理员功能:
(1)系统用户:管理员可以查看用户列表中某一用户信息详情,可以对用户信息进行重置和删除管理。
(2)招聘数据管理:管理员可以查看招聘数据列表中某一招聘详情,管理员可以对招聘数据列表信息进行查询、重置和删除操作。
(3)招聘信息管理:管理员可以查看招聘信息列表中某一信息详情和评论,可以对招聘信息进行重置和删除操作。
(4)求职者简历管理:管理员可以查看求职者简历列表中某一简历详情,可以对求职者简历列表信息进行重置和删除操作。
(5)在线沟通管理:管理员可以查看在线沟通列表中某一信息详情,可以对在线沟通列表信息进行重置和删除操作。
(6)系统管理:管理员可以对系统轮播图信息进行添加、重置和删除操作。
(7)招聘公告管理:管理员可以对公告信息进行添加、重置和删除操作。
(8)资源管理:管理员可以添加资讯分类信息,可以查看招聘资讯列表中某一招聘资讯详情和评论,可以对招聘资讯信息进行添加、重置和删除操作。
基于Spark的对招聘信息的分析与设计的系统非功能性需求比如基于Spark的对招聘信息的分析与设计的系统安全性怎么样,可靠性怎么样,性能怎么样,可拓展性怎么样等。具体可以表示在如下2-1表格中:
表2-1基于Spark的对招聘信息的分析与设计的系统非功能需求表
安全性 |
主要指基于Spark的对招聘信息的分析与设计的系统数据库的安装,数据库的使用和密码的设定必须合乎规范。 |
可靠性 |
可靠性是指基于Spark的对招聘信息的分析与设计的系统能够安装用户的指示进行操作,经过测试,可靠性90%以上。 |
性能 |
性能是影响基于Spark的对招聘信息的分析与设计的系统占据市场的必要条件,所以性能最好要佳才好。 |
可扩展性 |
比如数据库预留多个属性,比如接口的使用等确保了系统的非功能性需求。 |
易用性 |
用户只要跟着基于Spark的对招聘信息的分析与设计的系统的页面展示内容进行操作,就可以了。 |
可维护性 |
基于Spark的对招聘信息的分析与设计的系统开发的可维护性是非常重要的,经过测试,可维护性没有问题 |
2.4 系统用例分析
通过2.3功能的分析,得出了本基于Spark的对招聘信息的分析与设计的系统角色用例图:
求职者用户角色用例图如下图2-3所示。
图2-3 求职者用户角色用例图
企业用户角色用例图如下图2-4所示。
图2-4 企业用户角色用例图
管理员角色用例图如下图2-5所示。
图2-5 管理员角色用例图
本章主要通过对基于Spark的对招聘信息的分析与设计的系统可行性分析、流程分析、功能需求分析、系统用例分析,确定整个基于Spark的对招聘信息的分析与设计的系统要实现的功能。
3 系统总体设计
本章主要讨论的内容包括基于Spark的对招聘信息的分析与设计的系统功能模块设计、数据库系统设计。
3.1 系统架构设计
本基于Spark的对招聘信息的分析与设计的系统从架构上分为三层:表现层(UI)、业务逻辑层(BLL)以及数据层(DL)。
图3-1 系统架构设计图
表现层(UI):又称UI层,主要完成本基于Spark的对招聘信息的分析与设计的系统的UI交互功能,一个良好的UI可以打打提高用户的用户体验,增强用户使用本基于Spark的对招聘信息的分析与设计系统时的舒适度。UI的界面设计也要适应不同版本的基于Spark的对招聘信息的分析与设计系统以及不同尺寸的分辨率,以做到良好的兼容性。UI交互功能要求合理,用户进行交互操作时必须要得到与之相符的交互结果,这就要求表现层要与业务逻辑层进行良好的对接。
业务逻辑层(BLL):主要完成本基于Spark的对招聘信息的分析与设计系统的数据处理功能。用户从表现层传输过来的数据经过业务逻辑层进行处理交付给数据层,系统从数据层读取的数据经过业务逻辑层进行处理交付给表现层。
数据层(DL):由于本基于Spark的对招聘信息的分析与设计系统的数据是放在服务端的MySQL数据库中,因此本属于服务层的部分可以直接整合在业务逻辑层中,所以数据层中只有数据库,其主要完成本基于Spark的对招聘信息的分析与设计系统的数据存储和管理功能。
3.2 系统功能模块设计
在上一章节中主要对系统的功能性需求和非功能性需求进行分析,并且根据需求分析了本基于Spark的对招聘信息的分析与设计系统中的用例。那么接下来就要开始对本基于Spark的对招聘信息的分析与设计系统的架构、主要功能和数据库开始进行设计。基于Spark的对招聘信息的分析与设计系统根据前面章节的需求分析得出,其总体设计模块图如图3-2所示。
图3-2 系统功能模块图
数据库设计一般包括需求分析、概念模型设计、数据库表建立三大过程,其中需求分析前面章节已经阐述,概念模型设计有概念模型和逻辑结构设计两部分。
3.3.1 数据库概念结构设计
下面是整个基于Spark的对招聘信息的分析与设计系统中主要的数据库表总E-R实体关系图。

图3-3 系统总E-R关系图
通过上一小节中基于Spark的对招聘信息的分析与设计系统中总E-R关系图上得出一共需要创建很多个数据表。在此主要罗列几个主要的数据库表结构设计。
表access_token (登陆访问时长)
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
token_id |
int |
10 |
0 |
N |
Y |
临时访问牌ID |
|
2 |
token |
varchar |
64 |
0 |
Y |
N |
临时访问牌 |
|
3 |
info |
text |
65535 |
0 |
Y |
N |
||
4 |
maxage |
int |
10 |
0 |
N |
N |
2 |
最大寿命:默认2小时 |
5 |
create_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
创建时间: |
6 |
update_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
更新时间: |
7 |
user_id |
int |
10 |
0 |
N |
N |
0 |
用户编号: |
表article (文章:用于内容管理系统的文章)
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
article_id |
mediumint |
8 |
0 |
N |
Y |
文章id:[0,8388607] |
|
2 |
title |
varchar |
125 |
0 |
N |
Y |
标题:[0,125]用于文章和html的title标签中 |
|
3 |
type |
varchar |
64 |
0 |
N |
N |
0 |
文章分类:[0,1000]用来搜索指定类型的文章 |
4 |
hits |
int |
10 |
0 |
N |
N |
0 |
点击数:[0,1000000000]访问这篇文章的人次 |
5 |
praise_len |
int |
10 |
0 |
N |
N |
0 |
点赞数 |
6 |
create_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
创建时间: |
7 |
update_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
更新时间: |
8 |
source |
varchar |
255 |
0 |
Y |
N |
来源:[0,255]文章的出处 |
|
9 |
url |
varchar |
255 |
0 |
Y |
N |
来源地址:[0,255]用于跳转到发布该文章的网站 |
|
10 |
tag |
varchar |
255 |
0 |
Y |
N |
标签:[0,255]用于标注文章所属相关内容,多个标签用空格隔开 |
|
11 |
content |
longtext |
2147483647 |
0 |
Y |
N |
正文:文章的主体内容 |
|
12 |
img |
varchar |
255 |
0 |
Y |
N |
封面图 |
|
13 |
description |
text |
65535 |
0 |
Y |
N |
文章描述 |
表article_type (文章分类)
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
type_id |
smallint |
5 |
0 |
N |
Y |
分类ID:[0,10000] |
|
2 |
display |
smallint |
5 |
0 |
N |
N |
100 |
显示顺序:[0,1000]决定分类显示的先后顺序 |
3 |
name |
varchar |
16 |
0 |
N |
N |
分类名称:[2,16] |
|
4 |
father_id |
smallint |
5 |
0 |
N |
N |
0 |
上级分类ID:[0,32767] |
5 |
description |
varchar |
255 |
0 |
Y |
N |
描述:[0,255]描述该分类的作用 |
|
6 |
icon |
text |
65535 |
0 |
Y |
N |
分类图标: |
|
7 |
url |
varchar |
255 |
0 |
Y |
N |
外链地址:[0,255]如果该分类是跳转到其他网站的情况下,就在该URL上设置 |
|
8 |
create_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
创建时间: |
9 |
update_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
更新时间: |
表auth (用户权限管理)
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
auth_id |
int |
10 |