题目: 写一段代码,求两个数的最大公约数,尽量优化算法的性能。
方案1:辗转相除法
- 定理:两个正整数a和b(a>b),他们的最大公约数等于a除以b的余数c和b之间的最大公约数。
基于该定理,我们可以首先计算出a除以b的余数c,把问题转化成求b和c的最大公约数,然后计算出b除以c的余数d,把问题转化成求c和d的最大公约数;再计算出c除以d的余数e,把问题转换成求d和e的最大公约数…以此类推,逐渐把两个较大整数之间的运算简化成两个较小整数之间的运算,直到两个数可以整除,或者其中一个数减小到1为止。
代码实现:
/**
* 辗转相除法求最大公约数
* @param a @param b 求a和b的最大公约数
* @return 返回最大公约数
*/
public static int getGreatestCommonDivisor(int a,int b){
int big=a>b?a:b;
int small=a<b?a:b;
if (big%small==0){
return small;
}
return getGreatestCommonDivisor(big%small,small);
}
缺点: 辗转相除法在两个数较大时,进行取模运算(%)性能会比较差。
方案2:更相减损术
- 原理:两个正整数a和b(a>b),他们的最大公约数等于a-b的差值c和较小数b的最大公约数。
基于该定理:首先计算出a和b的差值c,把问题转化为求b和c的最大公约数;然后计算出c和b的差值d,计算出…以此类推,逐渐把两个较大整数之间的运算简化为两个较小整数之间的运算,直到两个数可以相等为止,最大公约数就是最终相等的这两个数的值。
代码实现:
//更相减损术求最大公约数
public static int getGreatestCommonDivisor(int a,int b){
if (a==b){
return a;
}
int big=a>b?a:b;
int small=a<b?a:b;
return getGreatestCommonDivisor(big-small,small);
}
缺点: 更相减损术利用两数求差的方式进行递归,其运算次数远远大于辗转相除法。
最终方案:
- 将辗转相除法与更相减损术的优势结合起来,在更相减损术的基础上使用移位运算。
具体步骤:
- 当a和b均为偶数时,
getGreatestCommonDivisor(a,b)=2*getGreatestCommonDivisor(a/2,b/2)=2*getGreatestCommonDivisor(a>>1,b>>1)
; - 当a为偶数,b为奇数时,
getGreatestCommonDivisor(a,b)=2*getGreatestCommonDivisor(a/2,b)=2*getGreatestCommonDivisor(a>>1,b)
; - 当a为奇数,b为偶数时,
getGreatestCommonDivisor(a,b)=2*getGreatestCommonDivisor(a,b/2)=2*getGreatestCommonDivisor(a,b>>1)
- 当a和b均为奇数时,先利用更相减损术计算一次,
getGreatestCommonDivisor(a,b)=2*getGreatestCommonDivisor(b,a-b)
,此时a-b必然是偶数,然后又可以继续进行以移位计算。
时间复杂度:O(max(a,b))
代码实现:
//最终方案:移位运算
public static int getGreatestCommonDivisor(int a,int b){
if (a==b){
return a;
}
if ((a&1)==0&&(b&1)==0){
return getGreatestCommonDivisor(a>>1,b>>1)<<1;
}else if ((a&1)==0&&(b&1)!=0){
return getGreatestCommonDivisor(a>>1,b);
}else if ((a&1)!=0&&(b&1)==0){
return getGreatestCommonDivisor(a,b>>1);
}else {
int big=a>b?a:b;
int small=a<b?a:b;
return getGreatestCommonDivisor(big-small,small);
}
}
时间复杂度:O(log(max(a,b)))