求最大公约数及其优化算法

题目: 写一段代码,求两个数的最大公约数,尽量优化算法的性能。


方案1:辗转相除法

  • 定理:两个正整数a和b(a>b),他们的最大公约数等于a除以b的余数c和b之间的最大公约数。

       基于该定理,我们可以首先计算出a除以b的余数c,把问题转化成求b和c的最大公约数,然后计算出b除以c的余数d,把问题转化成求c和d的最大公约数;再计算出c除以d的余数e,把问题转换成求d和e的最大公约数…以此类推,逐渐把两个较大整数之间的运算简化成两个较小整数之间的运算,直到两个数可以整除,或者其中一个数减小到1为止。

代码实现:

	/**
     * 辗转相除法求最大公约数
     * @param a @param b 求a和b的最大公约数
     * @return 返回最大公约数
     */
    public static int getGreatestCommonDivisor(int a,int b){
        int big=a>b?a:b;
        int small=a<b?a:b;
        if (big%small==0){
            return small;
        }
        return getGreatestCommonDivisor(big%small,small);
    }

缺点: 辗转相除法在两个数较大时,进行取模运算(%)性能会比较差。


方案2:更相减损术

  • 原理:两个正整数a和b(a>b),他们的最大公约数等于a-b的差值c和较小数b的最大公约数。

       基于该定理:首先计算出a和b的差值c,把问题转化为求b和c的最大公约数;然后计算出c和b的差值d,计算出…以此类推,逐渐把两个较大整数之间的运算简化为两个较小整数之间的运算,直到两个数可以相等为止,最大公约数就是最终相等的这两个数的值。

代码实现:

	//更相减损术求最大公约数
    public static int getGreatestCommonDivisor(int a,int b){
        if (a==b){
            return a;
        }
        int big=a>b?a:b;
        int small=a<b?a:b;
        return getGreatestCommonDivisor(big-small,small);
    }

缺点: 更相减损术利用两数求差的方式进行递归,其运算次数远远大于辗转相除法。


最终方案:

  • 将辗转相除法与更相减损术的优势结合起来,在更相减损术的基础上使用移位运算。

具体步骤:

  1. 当a和b均为偶数时,getGreatestCommonDivisor(a,b)=2*getGreatestCommonDivisor(a/2,b/2)=2*getGreatestCommonDivisor(a>>1,b>>1);
  2. 当a为偶数,b为奇数时,getGreatestCommonDivisor(a,b)=2*getGreatestCommonDivisor(a/2,b)=2*getGreatestCommonDivisor(a>>1,b)
  3. 当a为奇数,b为偶数时,getGreatestCommonDivisor(a,b)=2*getGreatestCommonDivisor(a,b/2)=2*getGreatestCommonDivisor(a,b>>1)
  4. 当a和b均为奇数时,先利用更相减损术计算一次,getGreatestCommonDivisor(a,b)=2*getGreatestCommonDivisor(b,a-b),此时a-b必然是偶数,然后又可以继续进行以移位计算。

时间复杂度:O(max(a,b))

代码实现:

	//最终方案:移位运算
    public static int getGreatestCommonDivisor(int a,int b){
        if (a==b){
            return a;
        }
        if ((a&1)==0&&(b&1)==0){
            return getGreatestCommonDivisor(a>>1,b>>1)<<1;
        }else if ((a&1)==0&&(b&1)!=0){
            return getGreatestCommonDivisor(a>>1,b);
        }else if ((a&1)!=0&&(b&1)==0){
            return getGreatestCommonDivisor(a,b>>1);
        }else {
            int big=a>b?a:b;
            int small=a<b?a:b;
            return getGreatestCommonDivisor(big-small,small);
        }
    }

时间复杂度:O(log(max(a,b)))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值