[C++] 哈希结构


小引

STL中的unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构,它是一种甚至优于红黑树的结构,可以使用O(1)的时间复杂度查找或者修改元素,而红黑树最优也是O(logN)

但是哈希结构也有他的局限之处:哈希冲突,概念及解决方法我们在本篇博客中会讲解。


哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(lgN),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。
如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素,这就是哈希结构

当向该结构中:

  • 插入元素
    根据待插入元素的key值,通过此函数计算出该元素的存储位置并按此位置进行存放。
  • 搜索元素
    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

例如:数据集合{1,7,6,4,5,9}
哈希函数设置为:hash(key) = key % capacity;capacity为存储元素底层空间总的大小)

存储情况如下图:
在这里插入图片描述

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。

  • 但如果插入了大于capacity的元素,如77是否就无法正常运行了?
  • 是的,使用这种简单的哈希函数设计出现这样的问题就无法应对了,因为出现了哈希冲突。

哈希冲突

不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突哈希碰撞

引起哈希冲突的一个原因可能是:哈希函数设计不够合理

  • 哈希函数设计原则:
    哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0m-1之间。哈希函数计算出来的地址能均匀分布在整个空间中(尽量避免冲突)。

哈希函数

  1. 直接定址法
    取关键字的某个线性函数为散列地址:Hash(Key)= A * Key + B
    优点:简单、均匀 。
    缺点:需要事先知道关键字的分布情况 。
    使用场景:适合查找比较小且连续的情况。

  2. 除留余数法
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p <= m),将关键码转换成哈希地址。

  3. 平方取中法
    假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为
    4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址 平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

  4. 折叠法
    折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。
    折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

  5. 随机数法
    选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。
    通常应用于关键字长度不等时采用此法

  6. 数学分析法
    设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。例如:
    假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现 冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。
    数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况

【小结】哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突


哈希冲突的解决方案

1. 闭散列

闭散列也叫开放定址法

当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

线性探测

比如现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

  1. 插入
    插入通过哈希函数获取待插入元素在哈希表中的位置。
    如果该位置中没有元素则直接插入新元素。
    如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素。
    在这里插入图片描述
  2. 删除
    删除采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。
    (比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素,设置状态值的方法。)
enum State{
	EMPTY,		//此位置为 空
	EXIST,		//此位置为 已有元素 
	DELETE		//此位置为 已经删除
}; 

线性探测的实现

// 注意:假如实现的哈希表中元素唯一,即key相同的元素不再进行插入
// 为了实现简单,此哈希表中我们将比较直接与元素绑定在一起

enum State {
	EMPTY,		//此位置为 空
	EXIST,		//此位置为 已有元素 
	DELETE		//此位置为 已经删除
};
template<class K, class V>
class HashTable{
	struct Elem{
		pair<K, V> _val;
		State _state;
	};
public:
	HashTable(size_t capacity = 3)
		: _ht(capacity), 
		_size(0)
	{
		for (size_t i = 0; i < capacity; ++i)
			_ht[i]._state = EMPTY;
	}
	bool Insert(const pair<K, V>& val){
		// 检测哈希表底层空间是否充足
		// _CheckCapacity();
		size_t hashAddr = HashFunc(key);
		// size_t startAddr = hashAddr;
		while (_ht[hashAddr]._state != EMPTY){
			if (_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first == key)
				return false;
			hashAddr++;
			if (hashAddr == _ht.capacity())
				hashAddr = 0;
			/*
				// 转一圈也没有找到,注意:动态哈希表该种情况可以不用考虑,哈希表中元素个数到达
			   一定的数量,哈希冲突概率会增大,需要扩容来降低哈希冲突,因此哈希表中元素是不会存满的
				if(hashAddr == startAddr)
				return false;
			*/
		}

		// 插入元素
		_ht[hashAddr]._state = EXIST;
		_ht[hashAddr]._val = val;
		_size++;
		return true;
	}
	int Find(const K& key){
		size_t hashAddr = HashFunc(key);
		while (_ht[hashAddr]._state != EMPTY){
			if (_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first == key)
				return hashAddr;

			hashAddr++;
		}
		return hashAddr;
	}
	bool Erase(const K& key){
		int index = Find(key);
		if (index != -1){
			_ht[index]._state = DELETE;
			_size--;
			return true;
		}
		return false;
	}
private:
	size_t HashFunc(const K& key){
		return key % _ht.capacity();		//除留余数法,闭散列的核心,也是局限性所在
									//因为必须给定一个整型家族的key值,如果传入字符串就无法判断
	}
private:
	vector<Elem> _ht;
	size_t _size;
};

上述哈希表还存在以下的缺陷:

  1. 只能存储key为整型的元素,其他类型无法解决,例如string对象。
    【解决方案】: 构造一个仿函数,重载operator()对非整型元素进行转化即可
//仿函数
template<class K>
struct HashFunc{		
	const K& operator()(const K& key){
		return key;
	}
};


//针对字符串key值的【模板特化】
template<>
struct HashFunc<string>{	
	size_t BKDRHash(const char* str){
		size_t hash = 0;
		while (*str){
			hash = hash * 131 + *str;
			++str;
		}
		return hash;
	}
	size_t operator()(const string& s){
		return BKDRHash(s.c_str());
	}
};

为了实现简单,此哈希表中我们将比较直接与元素绑定在一起

template<class K, class V, class HF>
class HashTable{
	 // ……
private:
size_t HashFunc(const K& key){
	return HF()(key)%_ht.capacity();
}
  1. 除留余数法,最好对一个素数取模,每次快速取一个类似两倍关系的素数又是一个问题。
    【解决方案】:给定一个素数表查找算法即可,获取到下一个素数、
const int PRIMECOUNT = 28;

const size_t primeList[PRIMECOUNT] ={
	// ul: unsigned long
	53ul, 97ul, 193ul, 389ul, 769ul,
	1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
	49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
	1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
	50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
 	1610612741ul, 3221225473ul, 4294967291ul
};

size_t GetNextPrime(size_t prime){
	size_t i = 0;
	for (; i < PRIMECOUNT; ++i){
		if (primeList[i] > prime)
			return primeList[i];
	}
	return primeList[i];
}
  1. 增容时机,如何增容还需要另外考虑。
    载荷因子 = 表中元素个数 / 表长度
    【方案】:对于开放定址法,载荷因子应控制在0.7 ~ 0.8以下,超过就需要增容。

线性探测的优缺点分析

优点缺点
实现简单一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。

线性探测的缺点的优化方案为另一种方法:二次探测


二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就
是挨着往后逐个去找
因此二次探测为了避免该问题,找下一个空位置的方法为: A(i)= (A(0) + i2 ) % m或者:A(i)= (A(0) - i2 ) % m。其中:i = 1,2,3…

是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。

研究表明:
当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装
满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。

因此:闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷

闭散列代码整合

namespace closehash{		//闭散列
	enum State{		//三种状态
		EXIST,
		EMPTY,
		DELETE,
	};

	template<class T>
	struct HashStruct{
		T _v;			
		State _state;
	};

	template<class K, class T>
	class HashTable{
		typedef HashStruct<T> HashStruct;
	public:
		bool Insert(const T& v){
			// 1.除0问题
			// 2.数据映射关系打乱
			if (_table.size() == 0 || 10 * _num / _table.size() >= 7){
				size_t newsize = _table.size() == 0 ? 10 : _table.size() * 2;
				/*	vector<HashStruct> newtable;
					newtable.resize(newsize);
					for (size_t i = 0; i < _table; i++)
					{
						if (_table[i]._state == EXIST)
						{}
					}
				*/
				HashTable<K, T> newht;
				newht._table.resize(newsize);
				for (size_t i = 0; i < newht._table.size(); ++i){
					newht._table[i]._state = EMPTY;
				}

				for (size_t i = 0; i < _table.size(); ++i){
					if (_table[i]._state == EXIST){
						newht.Insert(_table[i]._v);
					}
				}
				_table.swap(newht._table);
			}

			/*
			 *	1. 线性探测
			 *
			 */
			//size_t index = v % _table.size();
			//while (_table[index]._state == EXIST){
			//	if (_table[index]._v == v){
			//		return false;
			//	}

			//	++index;
			//	if (index == _table.size())
			//		index = 0;
			//}


			//2. 二次探测
			size_t start = v % _table.size();
			size_t index = start;
			size_t i = 1;
			while (_table[index]._state == EXIST){
				if (_table[index]._v == v){
					return false;
				}

				index = start + i*i;
				index %= _table.size();
				++i;
			}
			_table[index]._v = v;
			_table[index]._state = EXIST;
			_num++;

			return true;
		}

		HashStruct* Find(const K& k){
			if (_table.size() == 0)
				return nullptr;

			size_t index = k % _table.size();
			while (_table[index]._state != EMPTY){
				if (_table[index]._v == k && _table[index]._state == EXIST){
					return &_table[index];
				}

				++index;
				if (index == _table.size()){
					index = 0;
				}
			}

			return nullptr;
		}

		bool Erase(const K& k){
			HashStruct* ret = Find(k);
			if (ret == nullptr){
				return false;
			}
			else{
				ret->_state = DELETE;
				--_num;
				return true;
			}
		}

	private:
	
		//线性存储所需的成员变量:
		//HashStruct* _table;
		//size_t _size;
		//size_t _capacity;
		
		vector<HashStruct> _table;	//链式结构
		size_t _num = 0;		// 映射存储的数据个数
	};

	void TestHashTable(){
		//HashTable<int, int> s;
		//s.Insert(5);
		//s.Insert(3);
		//s.Insert(2);
		//s.Insert(12);
		//s.Insert(22);
		//s.Insert(9);
		//s.Insert(8);
		//s.Insert(7);

		HashTable<int, int> s;
		s.Insert(2);
		s.Insert(12);
		s.Insert(22);
		s.Insert(32);
	}
}

2. 开散列【优】

概念

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶(哈希桶),各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中
在这里插入图片描述
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

开散列的代码实现

namespace hashbucket{		//哈希桶
	template<class T>
	struct HashNode{
		HashNode<T>* _next;	//使用单向链表,正好符合哈希结构只有正向迭代器,无反向迭代器rbegin()...
		T _v;
		
		HashNode(const T& t)
			:_v(t)
			, _next(nullptr)
		{}
	};

	template<class K, class T, class KeyOfValue, class HF>
	class HashTable;		//前置声明,防止编译发现未定义的类型而无法通过

	template<class K, class T, class KeyOfValue, class HF>
	struct __HTIterator{
		typedef HashNode<T> Node;
		typedef __HTIterator<K, T, KeyOfValue, HF> Self;
		Node* _node;
		HashTable<K, T, KeyOfValue, HF>* _pht;

		__HTIterator(Node* node, HashTable<K, T, KeyOfValue, HF>* pht)
			:_node(node)
			, _pht(pht)
		{}

		T& operator*(){
			return _node->_v;
		}

		T* operator->(){
			return &(operator*());
		}

		// ++it
		Self& operator++(){
			if (_node->_next){
				_node = _node->_next;
			}
			else{
				KeyOfValue kov;
				size_t index = _pht->HashFunc(kov(_node->_v), _pht->_table.size());
				++index;
				while (index < _pht->_table.size()){
					if (_pht->_table[index]){
						_node = _pht->_table[index];
						break;
					}
					else{
						++index;
					}
				}

				// 所有桶走完了,置为nullptr表示end()的位置
				if (index == _pht->_table.size()){
					_node = nullptr;
				}
			}

			return *this;
		}

		bool operator!= (const Self& s){
			return _node != s._node;
		}
	};

	template<class K, class T, class KeyOfValue, class HF>
	class HashTable{
		typedef HashNode<T> Node;

		//friend struct __HTIterator<K, T, KeyOfValue, HF>;
		template<class K, class T, class KeyOfValue, class HF>
		friend struct __HTIterator;
	public:
		typedef __HTIterator<K, T, KeyOfValue, HF> iterator;
		iterator begin(){
			if (_num == 0){
				return end();
			}

			for (size_t i = 0; i < _table.size(); ++i){
				if (_table[i] != nullptr){
					return iterator(_table[i], this);
				}
			}

			return end();
		}

		iterator end(){
			return iterator(nullptr, this);
		}

		pair<iterator, bool> Insert(const T& v){
			KeyOfValue kov;
			// 增容 load factor == 1
			if (_table.size() == _num){
				size_t newsize = _table.size() == 0 ? 10 : _table.size() * 2;
				vector<Node*> newtable;
				newtable.resize(newsize);

				// 挪动旧表数据到新表计算新的位置
				for (size_t i = 0; i < _table.size(); ++i){
					Node* cur = _table[i];
					while (cur){
						Node* next = cur->_next;

						size_t index = HashFunc(kov(cur->_v), newtable.size());
						cur->_next = newtable[index];
						newtable[index] = cur;

						cur = next;
					}

					_table[i] = nullptr;
				}

				newtable.swap(_table);
			}

			size_t index = HashFunc(kov(v), _table.size());
			Node* cur = _table[index];
			while (cur){
				if (kov(cur->_v) == kov(v)){
					return make_pair(iterator(cur, this), false);
				}

				cur = cur->_next;
			}

			// 头插
			Node* newnode = new Node(v);
			newnode->_next = _table[index];
			_table[index] = newnode;
			++_num;

			return make_pair(iterator(newnode, this), true);
		}

		iterator Find(const K& k){
			KeyOfValue kov;
			size_t index = HashFunc(k, _table.size());
			Node* cur = _table[index];
			while (cur){
				if (kov(cur->_v) == k){
					return iterator(cur, this);
				}

				cur = cur->_next;
			}

			return end();
		}

		bool Erase(const K& k){
			KeyOfValue kov;
			size_t index = HashFunc(k, _table.size());
			Node* prev = nullptr;
			Node* cur = _table[index];

			while (cur){
				if (kov(cur->_v) == k){
					if (prev == nullptr){
						_table[index] = cur->_next;
					}
					else{
						prev->_next = cur->_next;
					}

					delete cur;
					return true;
				}

				prev = cur;
				cur = cur->_next;
			}
		}

		size_t HashFunc(const K& k, size_t n){
			HF hf;
			return hf(k) % n;
		}

	private:
		vector<Node*> _table;	//桶式结构
		size_t _num = 0;
	};
}

开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上: 由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

giturtle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值