[C++] 海量数据专讲:抖音、快手每日几亿用户活跃数据如何处理?(位图 与 布隆过滤器)


小引

本篇所讲的位图布隆过滤器,其实都是哈希表的具体应用~
这两个结构对于处理海量数据都有很好的功效!

区别:

  • 位图:适合处理整型数据。
  • 布隆:适合处理字符型非整型数据

位图

例如小视频服务器每天有海量的整型数据到达需要处理,使用位图就十分高效,不仅记录方便,存储更是十分轻量。

所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。

来看一个小问题:

40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中?

解法:

  1. 遍历,时间复杂度O(N),所以这种方法很低效。
  2. 排序,时间复杂度O(N * logN),如果利用二分查找: logN
  3. 位图解决:
    数据是否在给定的整型数据中,结果是在或者不在,刚好是2种状态,那么可以使用一个二进制比
    特位来代表数据是否存在的信息
    ,如果二进制比特位为1,代表存在,为0代表不存在。

实现一个位图类

class bitset{
public:
	//构造函数
	bitset(size_t bitCount)
		: _bit((bitCount>>5)+1)
		, _bitCount(bitCount)
	{}
	
	// 将which比特位置1
	void set(size_t which){
		if(which > _bitCount)
			return;
		size_t index = (which >> 5);
		size_t pos = which % 32;
		_bit[index] |= (1 << pos);
	}
	
	// 将which比特位置0
	void reset(size_t which){
		if(which > _bitCount)
			return;
		size_t index = (which >> 5);
		size_t pos = which % 32;
		_bit[index] &= ~(1<<pos);
	}
	
	// 检测位图中which是否为1
	bool test(size_t which){
		if(which > _bitCount)
			return false;
		size_t index = (which >> 5);
		size_t pos = which % 32;
		return _bit[index] & (1<<pos);
	}
	
	// 获取位图中比特位的总个数
	size_t size()const{ 
		return _bitCount;
	}
	
	// 位图中比特为1的个数
	size_t Count()const{
		int bitCnttable[256] = {
		0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2,
		3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3,
		3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,
		4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4,
		3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,
		6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,
		4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5,
		6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5,
		3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3,
		4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6,
		6, 7, 6, 7, 7, 8
		};

		size_t size = _bit.size();
		size_t count = 0;
		for(size_t i = 0; i < size; ++i){
			int value = _bit[i];
			int j = 0;
			while(j < sizeof(_bit[0])){
				unsigned char c = value;
				count += bitCntTable[c];
				++j;
				value >>= 8;
			}
		}
		return count;
	}
private:
	vector<int> _bit;
	size_t _bitCount;
};

应用

  1. 快速查找某个数据是否在一个集合中。
  2. 排序
  3. 求两个集合的交集、并集等
  4. 操作系统中磁盘块标记。(报文头部标志位等)

布隆过滤器

当今最为人们乐道的无非就是后起之秀的小视频软件了。

我们在使用新闻或者小视频软件客户端时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。
问题来了,新闻客户端推荐系统如何实现推送去重的?

  • 猜想:用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录?

其实不然!这样的方式虽然降低重复率,但是例如抖音、快手等软件拥有世界级的几亿数据,基于当今存储技术,在每日的海量数据面前,吉比特级的存储器也顶不住啊~

  • 另求他法:
方法分析
1. 用哈希表存储用户记录缺点:浪费空间
2. 用位图存储用户记录缺点:不能处理哈希冲突
3. 将哈希位图结合布隆过滤器,取其精华,弃其糟粕。

概念

布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”。

它是用多个哈希函数,将一个数据映射到位图结构中。
此种方式不仅可以提升查询效率,也可以节省大量的内存空间


接下来我们来探究它的实现

布隆过滤器的插入

// 假设布隆过滤器中元素类型为K,每个元素对应5个哈希函数
template<class K, 
	class KToInt1 = KeyToInt1,
	class KToInt2 = KeyToInt2,
	class KToInt3 = KeyToInt3,
	class KToInt4 = KeyToInt4,
	class KToInt5 = KeyToInt5
	>
class BloomFilter{
public:
	BloomFilter(size_t size) // 布隆过滤器中元素个数
		: _bmp(5*size), _size(0)
	{}
	bool Insert(const K& key){
		size_t bitCount = _bmp.Size();
		size_t index1 = KToInt1()(key)%bitCount;
		size_t index2 = KToInt2()(key)%bitCount;
		size_t index3 = KToInt3()(key)%bitCount;
		size_t index4 = KToInt4()(key)%bitCount;
		size_t index5 = KToInt5()(key)%bitCount;
		_bmp.Set(index1);
		_bmp.Set(index2);
		_bmp.Set(index3);
		_bmp.Set(index4);
		_bmp.Set(index5);
		
		_size++;
	}
private:
	bitset _bmp;
	size_t _size; // 实际元素的个数
}

布隆过滤器的查找

布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,降低哈希冲突率,因此被映射到的位置的比特位一定为1

所以可以按照以下方式进行查找
分别计算每个哈希值对应的比特位置存储的是否为0,只要有一个为0,代表该元素一定不在哈希表中,否则可能在哈希表中。

bool IsInBloomFilter(const K& key){
	size_t bitCount = _bmp.Size();
	
	//所有的false:一定不在
	size_t index1 = KToInt1()(key)%bitCount;
	if(!_bmp.Test(index1))
		return false;
	
	size_t index2 = KToInt2()(key)%bitCount;
	if(!_bmp.Test(index2))
		return false;
	
	size_t index3 = KToInt3()(key)%bitCount;
	if(!_bmp.Test(index3))
		return false;
	
	size_t index4 = KToInt4()(key)%bitCount;
	if(!_bmp.Test(index4))
		return false;
	
	size_t index5 = KToInt5()(key)%bitCount;
	if(!_bmp.Test(index5))
		return false;
	
	return true; // 有可能在
}

【注】:

  • 布隆过滤器如果说某个元素不存在时,该元素一定不存在
  • 如果该元素存在时,该元素可能存在,因为有些哈希函数存在一定的误判

比如:在布隆过滤器中查找"alibaba"时,假设5个哈希函数计算的哈希值为:13756,刚好和其他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。


布隆过滤器的删除

布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素

比如:删除一个元素,如果直接将该元素所对应的二进制比特位置0,该位对于其他元素的映射也被删除/替换了,因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠

  • 一种支持删除的方法:
    将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址) 加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。

缺陷:

  1. 无法确认元素是否真正在布隆过滤器中。
  2. 存在计数回绕,产生额外开销,甚者影响结果。

【小结】:

优点

  1. 增加和查询元素的时间复杂度为O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关。
  2. 哈希函数相互之间没有关系,方便硬件并行运算。
  3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势。
  4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势。
  5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能。
  6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算。

缺陷

  1. 误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中。
    ( 补救方法:再建立一个白名单,存储可能会误判的数据 )
  2. 不能获取元素本身,只能表示在不在。
  3. 一般情况下不能从布隆过滤器中删除元素。
  4. 如果采用计数方式删除,可能会存在计数回绕问题。

海量问题扩展

  • 哈希切割
    给一个超过100G大小的log filelog中存着IP地址:
  1. 设计算法找到出现次数最多的IP地址?
  2. 如何找到top KIP
  3. 如何直接用Linux系统命令实现?
  • 位图应用
  1. 给定100亿个整数,设计算法找到只出现一次的整数?
  2. 给两个文件,分别有100亿个整数,我们只有1G内存,如何找到两个文件交集?
  3. 1个文件有100亿个int1G内存,设计算法找到出现次数不超过2次的整数
  • 布隆过滤器
  1. 给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法
  2. 如何扩展BloomFilter使得它支持删除元素的操作
  • 倒排索引
    给上千个文件,每个文件大小为1K100M。给n个词,设计算法对每个词找到所有包含它的文件,你只有100K内存

所以对这两个结构有所了解之后,读者就大致有了四两拨千斤的思想。

不要惧怕“海量”二字,当今信息时代,大数据分析给人们带来便利的同时,相应的处理也要更加巧妙与灵活。让科技,为人所用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

giturtle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值