小引
本篇所讲的位图与布隆过滤器,其实都是哈希表的具体应用~
这两个结构对于处理海量数据都有很好的功效!
区别:
- 位图:适合处理整型数据。
- 布隆:适合处理字符型等非整型数据。
位图
例如小视频服务器每天有海量的整型数据到达需要处理,使用位图就十分高效,不仅记录方便,存储更是十分轻量。
所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。
来看一个小问题:
给
40
亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40
亿个数中?
解法:
- 遍历,时间复杂度
O(N)
,所以这种方法很低效。 - 排序,时间复杂度
O(N * logN)
,如果利用二分查找:logN
- 位图解决:
数据是否在给定的整型数据中,结果是在或者不在,刚好是2
种状态,那么可以使用一个二进制比
特位来代表数据是否存在的信息,如果二进制比特位为1
,代表存在,为0
代表不存在。
实现一个位图类
class bitset{
public:
//构造函数
bitset(size_t bitCount)
: _bit((bitCount>>5)+1)
, _bitCount(bitCount)
{}
// 将which比特位置1
void set(size_t which){
if(which > _bitCount)
return;
size_t index = (which >> 5);
size_t pos = which % 32;
_bit[index] |= (1 << pos);
}
// 将which比特位置0
void reset(size_t which){
if(which > _bitCount)
return;
size_t index = (which >> 5);
size_t pos = which % 32;
_bit[index] &= ~(1<<pos);
}
// 检测位图中which是否为1
bool test(size_t which){
if(which > _bitCount)
return false;
size_t index = (which >> 5);
size_t pos = which % 32;
return _bit[index] & (1<<pos);
}
// 获取位图中比特位的总个数
size_t size()const{
return _bitCount;
}
// 位图中比特为1的个数
size_t Count()const{
int bitCnttable[256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2,
3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3,
3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,
4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4,
3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,
6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,
4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5,
6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5,
3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3,
4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6,
6, 7, 6, 7, 7, 8
};
size_t size = _bit.size();
size_t count = 0;
for(size_t i = 0; i < size; ++i){
int value = _bit[i];
int j = 0;
while(j < sizeof(_bit[0])){
unsigned char c = value;
count += bitCntTable[c];
++j;
value >>= 8;
}
}
return count;
}
private:
vector<int> _bit;
size_t _bitCount;
};
应用
- 快速查找某个数据是否在一个集合中。
- 排序。
- 求两个集合的交集、并集等。
- 操作系统中磁盘块标记。(报文头部标志位等)
布隆过滤器
当今最为人们乐道的无非就是后起之秀的小视频软件了。
我们在使用新闻或者小视频软件客户端时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。
问题来了,新闻客户端推荐系统如何实现推送去重的?
- 猜想:用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录?
其实不然!这样的方式虽然降低重复率,但是例如抖音、快手等软件拥有世界级的几亿数据,基于当今存储技术,在每日的海量数据面前,吉比特级的存储器也顶不住啊~
- 另求他法:
方法 | 分析 |
---|---|
1. 用哈希表存储用户记录 | 缺点:浪费空间 |
2. 用位图存储用户记录 | 缺点:不能处理哈希冲突 |
3. 将哈希与位图结合 | 即布隆过滤器,取其精华,弃其糟粕。 |
概念
布隆过滤器是由布隆(Burton Howard Bloom
)在1970
年提出的一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”。
它是用多个哈希函数,将一个数据映射到位图结构中。
此种方式不仅可以提升查询效率,也可以节省大量的内存空间。
接下来我们来探究它的实现:
布隆过滤器的插入
// 假设布隆过滤器中元素类型为K,每个元素对应5个哈希函数
template<class K,
class KToInt1 = KeyToInt1,
class KToInt2 = KeyToInt2,
class KToInt3 = KeyToInt3,
class KToInt4 = KeyToInt4,
class KToInt5 = KeyToInt5
>
class BloomFilter{
public:
BloomFilter(size_t size) // 布隆过滤器中元素个数
: _bmp(5*size), _size(0)
{}
bool Insert(const K& key){
size_t bitCount = _bmp.Size();
size_t index1 = KToInt1()(key)%bitCount;
size_t index2 = KToInt2()(key)%bitCount;
size_t index3 = KToInt3()(key)%bitCount;
size_t index4 = KToInt4()(key)%bitCount;
size_t index5 = KToInt5()(key)%bitCount;
_bmp.Set(index1);
_bmp.Set(index2);
_bmp.Set(index3);
_bmp.Set(index4);
_bmp.Set(index5);
_size++;
}
private:
bitset _bmp;
size_t _size; // 实际元素的个数
}
布隆过滤器的查找
布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,降低哈希冲突率,因此被映射到的位置的比特位一定为1
。
所以可以按照以下方式进行查找:
分别计算每个哈希值对应的比特位置存储的是否为0
,只要有一个为0
,代表该元素一定不在哈希表中,否则可能在哈希表中。
bool IsInBloomFilter(const K& key){
size_t bitCount = _bmp.Size();
//所有的false:一定不在
size_t index1 = KToInt1()(key)%bitCount;
if(!_bmp.Test(index1))
return false;
size_t index2 = KToInt2()(key)%bitCount;
if(!_bmp.Test(index2))
return false;
size_t index3 = KToInt3()(key)%bitCount;
if(!_bmp.Test(index3))
return false;
size_t index4 = KToInt4()(key)%bitCount;
if(!_bmp.Test(index4))
return false;
size_t index5 = KToInt5()(key)%bitCount;
if(!_bmp.Test(index5))
return false;
return true; // 有可能在
}
【注】:
- 布隆过滤器如果说某个元素不存在时,该元素一定不存在。
- 如果该元素存在时,该元素可能存在,因为有些哈希函数存在一定的误判。
比如:在布隆过滤器中查找"alibaba
"时,假设5
个哈希函数计算的哈希值为:1
、3
、7
、5
、6
,刚好和其他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。
布隆过滤器的删除
布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。
比如:删除一个元素,如果直接将该元素所对应的二进制比特位置0
,该位对于其他元素的映射也被删除/替换了,因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。
- 一种支持删除的方法:
将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k
个计数器(k
个哈希函数计算出的哈希地址) 加一,删除元素时,给k
个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。
缺陷:
- 无法确认元素是否真正在布隆过滤器中。
- 存在计数回绕,产生额外开销,甚者影响结果。
【小结】:
优点
- 增加和查询元素的时间复杂度为
O(K)
, (K
为哈希函数的个数,一般比较小),与数据量大小无关。 - 哈希函数相互之间没有关系,方便硬件并行运算。
- 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势。
- 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势。
- 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能。
- 使用同一组散列函数的布隆过滤器可以进行交、并、差运算。
缺陷
- 有误判率,即存在假阳性(
False Position
),即不能准确判断元素是否在集合中。
( 补救方法:再建立一个白名单,存储可能会误判的数据 ) - 不能获取元素本身,只能表示在不在。
- 一般情况下不能从布隆过滤器中删除元素。
- 如果采用计数方式删除,可能会存在计数回绕问题。
海量问题扩展
- 哈希切割
给一个超过100G
大小的log file
,log
中存着IP
地址:
- 设计算法找到出现次数最多的
IP
地址? - 如何找到
top K
的IP
? - 如何直接用
Linux
系统命令实现?
- 位图应用
- 给定
100
亿个整数,设计算法找到只出现一次的整数? - 给两个文件,分别有
100
亿个整数,我们只有1G
内存,如何找到两个文件交集? 1
个文件有100
亿个int
,1G
内存,设计算法找到出现次数不超过2
次的整数
- 布隆过滤器
- 给两个文件,分别有
100
亿个query
,我们只有1G
内存,如何找到两个文件交集?分别给出精确算法和近似算法 - 如何扩展
BloomFilter
使得它支持删除元素的操作
- 倒排索引
给上千个文件,每个文件大小为1K
—100M
。给n
个词,设计算法对每个词找到所有包含它的文件,你只有100K
内存
所以对这两个结构有所了解之后,读者就大致有了四两拨千斤的思想。
不要惧怕“海量”二字,当今信息时代,大数据分析给人们带来便利的同时,相应的处理也要更加巧妙与灵活。让科技,为人所用。