快速掌握如何复杂度分析与计算?

为什么要学习复杂度分析?

你可能很疑惑,为什么要复杂度分析呢,通过统计、监控、就能得到算法执行的空间和占用的内存大小。

为什么还要做时间,空间度复杂度分析呢?

前者不足之处:

1. 测试结果非常依赖测试环境

测试环境中硬件的不同对测试结果会有很大的影响,比如,我们拿同一个代码,分别用 Intel Core i9 处理器和 Intel Core i3 处理器来运行,不用说, i9 处理器要
比 i3 处理器执行的速度快很多

2. 测试结果受数据规模的影响很大

比如对排序算法,对一段代码,不同的算法,排序的执行时间就会有很大的差别,对于小规模的数据排序,插入排序可能会比快速排序还要快。

正文

大O复杂度表示法

我们可以推倒出一个重要的定律。
那就是,所有代码的执行时间**T(n)**与每行代码的执行次数n成正比。

在这里插入图片描述
T(n),他表示的是代码执行的时间,n表示数据规模大小,f(n)表示每行代码执行的次数总和,公式中的O,表示代码的执行时间T(n)与f(n)表示式成正比

大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度

我们只需要记录一个最大量级就可以了,如果用大O表示法,表示刚刚说的两段代码,就可以记为T(n) = O(n); T(n) = O(n 2 )。

**O(n)O(n2)**这就是我们所说的时间的复杂度

时间复杂度分析

前面所说的是他的时间复杂度的由来和表示方法,下面有3种方法:

1.只关注循环执行次数最多的一段代码

只需要记录一个最大阶的量级就可以了,,分析一个算法,一段代码的时间复杂度的时候,只关注循环执行次数最多的那一段代码就可以了

2.加法法则

int cal(int n) {
int sum_1 = 0;
int p = 1;
for (; p < 100; ++p) {
sum_1 = sum_1 + p;
}
int sum_2 = 0;
int q = 1;
for (; q < n; ++q) {
sum_2 = sum_2 + q;
}
int sum_3 = 0;
int i = 1;
int j = 1;
for (; i <= n; ++i) {
j = 1;
for (; j <= n; ++j) {
sum_3 = sum_3 + i * j;
}
}
return sum_1 + sum_2 + sum_3;
}

第一段是循环执行100次,是一个常量的执行时间,跟 n的规模没有关系

注意:即使这段代码循环100000次,1000000次,只要是一个已知的数,跟n无关,则照样是一个常量级的执行时间。时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。

第二段是O(n),第三段是O(n2),则整段的时间复杂度是O(n2)

如果把这个规则抽象成公式就是:

如果 T1(n)=O(f(n)) , T2(n)=O(g(n)) ;那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).

3.乘法法则,嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

举个例子:假设T1(n) = O(n),T2(n) = O(n 2 ),则T1(n) * T2(n) = O(n 3 )

比如下面的代码所示

int cal(int n) {
int ret = 0;
int i = 1;
for (; i < n; ++i) {
ret = ret + f(i);
}
}
int f(int n) {
int sum = 0;
int i = 1;
for (; i < n; ++i) {
sum = sum + i;
}
return sum;
}

cal函数的话,第4-6行的代码的时间复杂度是T1(n)=O(n),但f(n)函数本身不是一个简单的操作,他的时间复杂度是T2(n)=O(n),所以整个cal函数的时间复杂度就是T(n) = T1(n) * T2(n) = O(n*n) = O(n 2 )

换成公式的话就是:**T1(n)=O(f(n)) , T2(n)=O(g(n)) ;那么 T(n)=T1(n)*T2(n)=O(f(n))O(g(n))=O(f(n)g(n)).

几种常见时间复杂度实例分析

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1IgJZClX-1586003300676)(C:\Users\asus\AppData\Roaming\Typora\typora-user-images\image-20200403140042703.png)]

我们可以粗略分为两类多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2^n),O(n!)

当数据规模n越来越大,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长,所以,非多项式时间复杂度的算法其实是非常低效的算法

1.O(1)

首先先要明确的概念,O(1)只是常量级时间复杂度的一种表示方法,并不是执行一行代码

总结一下,只要代码的执行时间不随n的增大而增大,这样的代码复杂度我们都记作O(1),或者说,一般情况下,只要算法中不存在循环语句,递归语句,即使有成千上万的代码,时间复杂度也是O(1);

2.O(logn)、O(nlogn)

对于对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度,

我通过一个例子来说明一下。

i=1;
while (i <= n) {
i = i * 2;
}

根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。
从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2 。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:

在这里插入图片描述

所以,我们只要知道x值是多少,就知道这行代码执行的次数了。通过2 ^x =n求解x这个问题我们想高中应该就学过了,我就不多说了。x=log 2 n,所以,这段代码的时间复杂度就是O(log 2 n)
现在,我把代码稍微改下,你再看看,这段代码的时间复杂度是多少?

i=1;
while (i <= n) {
i = i * 3;
}

根据我刚刚讲的思路,很简单就能看出来,这段代码的时间复杂度为O(log 3 n)。实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn) 。为什么呢?

我们知道,对数之间是可以互相转换的,log 3 n就等于log 3 2 * log 2 n,所以O(log 3 n) = O(C * log 2 n),其中C=log 3 2是一个常量。基于我们前面的一个理论:在采用大O标记复杂度的时候,可以忽略系数,即O(Cf(n)) = O(f(n))。所以,O(log 2 n) 就等于O(log 3 n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,
统一表示为 O(logn) 。

如果你理解了我前面讲的 O(logn) ,那 O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是 O(logn) ,我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且, O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)

3.O(m+n)、O(m*n)

我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。老规矩,先看代码!

int cal(int m, int n) {
int sum_1 = 0;
int i = 1;
for (; i < m; ++i) {
sum_1 = sum_1 + i;
}
int sum_2 = 0;
int j = 1;
for (; j < n; ++j) {
sum_2 = sum_2 + j;
}
return sum_1 + sum_2;
}

m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n) 。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为: T1(m) + T2(n) = O(f(m) + g(n)) 。但是乘法法则继续有效: *T1(m)T2(n) = O(f(m) * f(n))

空间复杂度分析

前面我们可以理解到,时间复杂度的全称是渐进时间复杂度,表示算法执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进时间复杂度,表示的是算法的存储空间和数据规模之间的增长关系。

拿具体的例子来说,

void print(int n) {
int i = 0;
int[] a = new int[n];
for (i; i <n; ++i) {
a[i] = i * i;
}
for (i = n-1; i >= 0; --i) {
print out a[i]
}
}

跟时间复杂度分析一致,我们可以看到,第2行代码中,我们申请一个空间存储变量i,但是它是常量级的,跟数据规模n无关,所以我们可以忽略,第3行代码申请一个大小为n的int类型数组,除此之外,剩下的代码没有占有更多的空间,所以整段代码的空间复杂度就是O(n)、

我们常见的空间复杂度就是O(1)、O(n)、O(n 2 ),像O(logn)、O(nlogn)这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。
所以,对于空间复杂度,掌握刚我说的这些内容已经足够了。

浅析最好,最坏,平均,均摊时间复杂度

今天我会继续了解最好情况时间复杂度(best case time complexity),最坏情况时间复杂度(worst case time complexity),平均情况时间复杂度(average case time complexity),均摊时间复杂度(amortized time complexity),

最好和最坏情况时间复杂度

举个例子:

/ n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) pos = i;
}
return pos;
}

我们很容易知道,这个代码的时间复杂度是O(n),但是这段代码写的不够高效,我们可以这样优化一下

// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) {
pos = i;
break;
}
}
return pos;
}

这个时候,问题来了,我们优化以后,因为,要查找的变量 x 可能出现在数组的任意位置。如果数组中第一个元素正好是要查找的变量 x ,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1) 。但如果数组中不存在变量 x ,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n) 。所以,不同的情况下,这段代码的时间复杂度是不一样的。
为了表示代码在不同情况下的不同时间复杂度,我们需要引入三个概念:最好情况时间复杂度,最坏时间复杂度和平均情况时间复杂度。

顾名思义,最好情况时间复杂度就是,在理想的情况下,执行这段代码的时间复杂度,就像我们刚刚讲到的,在最理想的情况下,要查找的变量x正好是数组的第一个元素,对应的时间复杂度就是最好情况时间复杂度

同理:最坏情况时间复杂度就是,在最槽糕的情况下,就像刚才举得那个例子,如果数组中没有要查找的变量x,我们需要把整个数组都遍历一遍才行,所以这种情况对应的时间复杂度是最坏情况时间复杂度

平均情况时间复杂度

我们都知道,最好和最坏情况时间复杂度都是极端情况下发生的,发生的概率并不大。为了更好的表示平均情况下的复杂度,我们需要引入另一个概念:平均情况时间复杂度,后面我们简称平均时间复杂度,

通过刚刚变量x的例子进行分析,看如何计算平均时间复杂度

要查找的变量x在数组中的位置,有n+1种情况,在数组0~n-1位置中和不在数组中,我们把每种情况需要遍历的元素个数累加起来,然后再除以n+!,就可以得到需要遍历的元素个数的平均值。即

在这里插入图片描述
我们知道,时间复杂度大O标记法中,可以省略掉系数,低阶,常量,所以我们把刚刚这个公式简化后,得到的平均时间复杂度是O(n)

这个结论虽然是正确的,但是计算过程稍微有点儿问题。究竟是什么问题呢?我们刚讲的这 n+1 种情况,出现的概率并不是一样的。我带你具体分析一下。(这里要稍微用到一点儿概率论的知识,不过非常简单,你不用担心。)

我们知道,要查找的变量 x ,要么在数组里,要么就不在数组里。这两种情况对应的概率统计起来很麻烦,为了方便你理解,我们假设在数组中与不在数组中的概率都为 1/2 。另外,要查找的数据出现在 0 ~ n-1 这 n 个位置的概率也是一样的,为 1/n 。所以,根据概率乘法法则,要查找的数据出现在 0 ~ n-1 中任意位置的概率就是 1/(2n) 。

因此,前面的推导过程中存在的最大问题就是,没有将各种情况发生的概率考虑进去。如果我们把每种情况发生的概率也考虑进去,那平均时间复杂度的计算过程就变成了这样:
在这里插入图片描述

这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度

引入概率之后,前面那段代码的加权平均值为 (3n+1)/4 。用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n) 。

你可能会说,平均时间复杂度分析好复杂啊,还要涉及概率论的知识。实际上,在大多数情况下,我们并不需要区分最好、最坏、平均情况时间复杂度三种情况。像我们上一节课举的那些例子那样,很多时候,我们使用一个复杂度就可以满足需求了。只有同一块代码在不同的情况下,时间复杂度有量级的差距,我们才会使用这三种复杂度表示法来区分。

均摊时间复杂度

一个更高级的概念,我们除了了解他的概念,还应该对他对应的分析方法,摊还分析(或者叫平摊分析),注意跟平均时间复杂度进行区分。

借助例子说明一下

 array表示一个长度为n的数组
// 代码中的array.length就等于n
int[] array = new int[n];
int count = 0;
void insert(int val) {
if (count == array.length) {
int sum = 0;
for (int i = 0; i < array.length; ++i) {
sum = sum + array[i];
}
array[0] = sum;
count = 1;
}
array[count] = val;
++count;
}

按照前面的平均复杂度的概率方法分析的话,复杂度为O(1),但这样很麻烦;

于是我们引入一种更加简单的分析方法,摊还分析法,通过该方法得到的时间复杂度叫做均摊时间复杂度

我们还是继续看在数组中插入数据的这个例子。每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1) 。这就是均摊分析的大致思路。你都理解了吗?

总结一下他的时间场景

对于一个数据结构进行的一组连续操作中,大部分情况下时间复杂度都很低,只有个别的情况下时间复杂度比较高,而且这些操作之间,存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能够将时间复杂度较高的那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上,而且,能够应用均摊时间复杂度的场合,一般均摊时间复杂度就是等于最好情况时间复杂度

尽管很多数据结构和算法书籍都花了很大力气来区分平均时间复杂度和均摊时间复杂度,但其实我个人认为,均摊时间复杂度就是一种特殊的平均时间复杂度,我们没必要花太多精力去区分它们。你最应该掌握的是它的分析方法,摊还分析。至于分析出来的结果是叫平均还是叫均摊,这只是个说法,并不重要。

内容小结

基础复杂度分析的知识就到此讲完了,我们总结一下

复杂度也叫作渐进复杂度,包括时间复杂度,和空间复杂度,用来分析算法的执行效率与数据规模之间的增长关系,我们可以粗略表示,越高级复杂度算法,执行效率就越低,常见复杂度并不多,从低阶到高阶O(1)、O(logn)、O(n)、O(nlogn)、O(n 2 ),你会发现几乎所有的数据结构和算法的复杂度都跑不出这几个。

复杂度分析还有其他几个相关的概念,分别有:最好情况时间复杂度,最坏情况时间复杂度,平均情况时间复杂度,均摊时间复杂度。之所以引入这几个概念,是因为,在不同输入的情况下,复杂度量级有可能是不一样的。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值