
算法:并查集
难度:NOIP
题解:
将所有边权从小到大排序,正序枚举最小边,在以第i条边为最短边的情况下,枚举j(权值比i大的边),用并查集维护全图的连通性,如果s,t已经连通,并且做到可以更新答案,那么就可以break了,因为继续枚举j是没有意义的,计算出的答案一定比现在的答案大(因为我们之前把边权从小到大排序了!)。这样我们通过枚举以i为最短边,维护s,t连通性,完美的求出了最优解!
时间复杂度:
代码如下:
居然因为gcd敲错了调了30min<"????">
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define ll long long
#define N 5005
using namespace std;
struct node
{
int x,y,v;
}edg[N];
int cmp(node x,node y)
{
return x.v<y.v;
}
int fa[N];
int findf(int x)
{
if(x==fa[x]) return x;
return fa[x]=findf(fa[x]);
}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i = 1;i <= m;i++)
{
scanf("%d%d%d",&edg[i].x,&edg[i].y,&edg[i].v);
}
sort(edg+1,edg+1+m,cmp);
int s,t,minn=0,maxn=0;
double ans=999999999.0000;
scanf("%d%d",&s,&t);
for(int i = 1;i <= m;i++)
{
for(int j = 1;j <= n;j++)
{
fa[j]=j;
}
for(int j = i;j <= m;j++)
{
int t1=findf(edg[j].x);
int t2=findf(edg[j].y);
if(t1!=t2)
{
fa[t1]=t2;
}
if(findf(s)==findf(t))
{
if((double)edg[j].v/edg[i].v<ans)
{
ans=(double)edg[j].v/edg[i].v;
minn=edg[i].v;
maxn=edg[j].v;
break;
}
}
}
}
if(!maxn) puts("IMPOSSIBLE");
else
{
int gd=gcd(minn,maxn);
if(minn/gd!=1) printf("%d/%d",maxn/gd,minn/gd);
else printf("%d\n",maxn/gd);
}
return 0 ;
}
本文介绍了一种使用并查集算法解决特定图论问题的方法。通过将边按权重排序,枚举每条边作为最短边,利用并查集维护图的连通性,从而高效地找到两个节点间边权比值的最小值。
612

被折叠的 条评论
为什么被折叠?



