Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 3380 Solved: 1877
Description
给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000)。给你两个顶点S和T,求
一条路径,使得路径上最大边和最小边的比值最小。如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出这个
比值,如果需要,表示成一个既约分数。 备注: 两个顶点之间可能有多条路径。
Input
第一行包含两个正整数,N和M。下来的M行每行包含三个正整数:x,y和v。表示景点x到景点y之间有一条双向公路
,车辆必须以速度v在该公路上行驶。最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比
最小的路径。s和t不可能相同。
1
Output
如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。
如果需要,输出一个既约分数。
Sample Input
【样例输入1】
4 2
1 2 1
3 4 2
1 4
【样例输入2】
3 3
1 2 10
1 2 5
2 3 8
1 3
【样例输入3】
3 2
1 2 2
2 3 4
1 3
Sample Output
【样例输出1】
IMPOSSIBLE
【样例输出2】
5/4
【样例输出3】
2
枚举第一条边的最小生成树
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<set>
const int MAXN=5000+5000;
using namespace std;
int N,M,S,T,temin,mpmax,finalmin,finalmax,minn,fa[MAXN],ff,tt,vv;
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
void Union(int x,int y){
x=find(x);y=find(y);
if(x==y) return;
fa[x]=y;
}
int gcd(int x,int y){
return y==0?x:gcd(y,x%y);
}
vector<pair<int,pair<int,int> > >v;
int main(){
scanf("%d%d",&N,&M);
for(register int i=1;i<=M;i++){
scanf("%d%d%d",&ff,&tt,&vv);
pair<int,int>p(ff,tt);
pair<int,pair<int,int> >pp(vv,p);
v.push_back(pp);
}
scanf("%d%d",&S,&T);
sort(v.begin(),v.end());
double minn=100000000.0;
for(register vector<pair<int,pair<int,int> > >::iterator it=v.begin();it!=v.end();it++){
for(register int i=1;i<=N;i++)fa[i]=i;
pair<int,pair<int,int> >ppp=*it;
temin=ppp.first;
mpmax=0;
vector<pair<int,pair<int,int> > >::iterator iter=it;
while(find(S)!=find(T)&&iter!=v.end()){
pair<int,pair<int,int> >p=*iter;
Union(p.second.first,p.second.second);
mpmax=p.first;
iter++;
}
if(find(S)!=find(T)) continue;
if(minn>(mpmax*1.0/temin)){
finalmax=mpmax;
finalmin=temin;
minn=mpmax*1.0/temin;
}
}
if(minn==100000000.0) printf("IMPOSSIBLE\n");
else{
int temp=gcd(finalmax,finalmin);
finalmax/=temp;finalmin/=temp;
if(finalmax%finalmin==0){
printf("%d\n",finalmax/finalmin);
}else{
printf("%d/%d\n",finalmax,finalmin);
}
}
return 0;
}