三阶段DEA模型操作步骤笔记

参考B站视频三阶段DEA操作步骤,做个简单的笔记,便于用的时候复习
https://www.bilibili.com/video/BV1F4411n75p?p=1


使用到的软件:DEAP2.1、Frontier4.1、excel

根据数据包络法对DMU的内在要求,即DMU的个数要大于等于所有的投入变量和产出变量的两倍

第一阶段:传统DEA模型

这里原始数据是截取博主给的数据中的前10个(主要是记录操作步骤) :

3个投入,2个产出,2个环境变量
在这里插入图片描述

运用DEAP2.1软件进行效率分析

在这里插入图片描述
如何使用deap软件

在这里插入图片描述

(1)打开123.DTA,用于存储数据,产出在前、投入在后

在这里插入图片描述
将数据复制到 123.dta
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

crste = TE
vrste = PTE
scale = SE

TE表示综合效率,PTE表示纯技术效率,SE表示规模效率,满足TE=SExPTE;drs表示规模报酬递减,irs表示规模报酬递增,- 表示规模报酬不变。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
deap 2.1软件分析过程及结果解释

第一阶段分析出来的投入产出松弛变量可能受到外部环境因素、随机误差以及内部管理因素影响,通过随机前沿分析方法(Stochastic Frontier Analysis,简称SFA)对上述因素进行测算并将其影响剔除。

(1)

在这里插入图片描述
然后

松弛变量S = 原始投入值 - 目标投入值

在这里插入图片描述

关于
这样算出来的松弛变量与DEA结果带的松弛变量结果 SUMMARY OF INPUT SLACKS 部分差距很大的原因

四阶段DEA松弛变量及模型调整问题
[经济学] 请教:DEA分析中投影变量与松弛变量之间的关系
https://bbs.pinggu.org/thread-3347318-1-1.html

其次,对效率为1的DUM,松弛变量可以令为0

在这里插入图片描述
在这里插入图片描述
注:因原始数据为残缺的,这些结果数值不必在意,主要是操作步骤

第二阶段(SFA)

理论部分我参考的是:研发投入产出效率的国际比较研究—基于三阶段DEA模型分析
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
以及 关于三阶段DEA模型的几点研究

实际操作运用Frontier4.1软件+ excel

在这里插入图片描述

投入的松弛变量作为因变量,K个环境变量作为自变量

注意:SAF只能做单产出分析,即每次只能调整一个投入变量,若有 m 个投入变量,则需要进行 m 次调整。

首先对投入1进行调整,将excel中整理好的数据复制粘贴进 EG1.DTA 中

如下图
在这里插入图片描述在这里插入图片描述

注意顺序

第一列是评价体系的序号;第二列是时期t;.第三列是因变量;.第四列之后是K全自变量

接下来设置 EG1.ins

在这里插入图片描述
这里根据自己的实际情况设置参数

我这里选择

第一个 y :假设U的分布。y表示截断分布,n表示半正态分布.
第二个 y :表示时变模型,n表示非时变模型。
选择 n

其他设置保持不变.

设置好之后,运行front41.exe
在这里插入图片描述
输入 :
F
EG1.ins在这里插入图片描述

回车之后,文件夹中会新生产一个eg1.out 文件

在这里插入图片描述

打开新生成的 out 文件

在使用Frontier4.1分析投入差额值时,估计回归系数使用的是最大似然法。

在这里插入图片描述
检验 参数是否显著(t检验是检验参数是否显著为0,参数是否有统计学意义) 以及 判断LR是否通过检验(单边误差似然检验值,为了判断使用SFA模型是否合理)

对于 t 值( t-ratio) ,一般t值大于2,通常都显著,但t值并不是最终判定标准,还需要结合 p值 一起看(计算P值的方法在下方t值分布表中有)。

以及 LR 值,单边似然比统计量LR=-2×ln (L (H0) /L (H1) )

在这里插入图片描述

t检验的自由度是样本数-待估参数-1,LR检验的自由度见结果:with number of restrictions

环境变量数
在这里插入图片描述

在这里插入图片描述

:***、**、*分别表示在1%、5%、10%的显著性水平上通过正态检验

t分布表如下
在这里插入图片描述
在这里插入图片描述
注:对 α < 0.5 ,有 t α < − t 1 − α \text{注:对}\alpha <0.5\text{,有}t_{\alpha}<-t_{1-\alpha} 注:对α<0.5,有tα<t1α

对于 gamma 值

gamma 之后有一个t值,结合数据本身的自由度,计算出P值,通过P值来看显著性。

gamma 值,其越趋近于1,表明存在环境因素对xxx效率的干扰,有必要通过公式对原始投入值进行调整。

gamma值一直都是0.999999不是代表没法继续用三阶段了,实际上只要是0-1之间就可以

还要看参数的正负性

根据投入不同而使用独立的回归方程,因而可以直观的判断各个自变量对不同差额值的影响。由于环境变量是对投入差额值进行的回归,所以当相关系数(参数)为正时,表示增加环境变量有利于投入差额值的增加,即有利于增加各投入变量浪费或增加负产出,反之亦然。

也即

系数为正说明该环境变量的增加不利于效率的提高,会造成投入要素的浪费,为负则相反,有利于提高效率。


假设参数都通过检验

在这里插入图片描述
在这里插入图片描述
接下来 就是根据公式通过excel得到调整后的投入1值

S i j = f j ( z j , β j ) + v i j + u i j S_{ij}=f^j\left( z_j,\beta _j \right) +v_{ij}+u_{ij} Sij=fj(zj,βj)+vij+uij

符合含义在前面参考文献中有

根据Frontier4.1软件,得到SFA估计的系数 β ^ 0 , β ^ 1 , β ^ 2 \hat{\beta}_0,\hat{\beta}_1,\hat{\beta}_2 β^0,β^1,β^2以及
σ 2 = σ u 2 + σ v 2 、 γ = σ u 2 σ u 2 + σ v 2 \sigma ^2=\sigma _{u}^{2}+\sigma _{v}^{2}\text{、}\gamma =\frac{\sigma _{u}^{2}}{\sigma _{u}^{2}+\sigma _{v}^{2}} σ2=σu2+σv2γ=σu2+σv2σu2

从而可得到环境值
f = β ^ 0 + β ^ 1 Z 1 + β ^ 2 Z 2 f=\hat{\beta}_0+\hat{\beta}_1Z_1+\hat{\beta}_2Z_2 f=β^0+β^1Z1+β^2Z2
其中, Z 1 Z_1 Z1 Z 2 Z_2 Z2为环境变量

现在主要是求 u 和 v ,可以用下面的公式得到

(1)回归的混合误差项现在是可以求得的

ε i = v i j + u i j = S − f \varepsilon_i =v_{ij}+u_{ij}=S-f εi=vij+uij=Sf

先求 u ,根据公式可用条件期望值将其代替

E ( u i ∣ ε i ) = σ ∗ [ φ ( λ ε i σ ) Φ ( λ ε i σ ) + λ ε i σ ] E\left( u_i|\varepsilon _i \right) =\sigma ^*\left[ \frac{\varphi \left( \lambda \frac{\varepsilon _i}{\sigma} \right)}{\varPhi \left( \lambda \frac{\varepsilon _i}{\sigma} \right)}+\lambda \frac{\varepsilon _i}{\sigma} \right] E(uiεi)=σ[Φ(λσεi)φ(λσεi)+λσεi]

其中 σ 2 = σ u 2 + σ v 2 、 ε i = v i j + u i j 、 σ ∗ = σ u σ v σ \sigma ^2=\sigma _{u}^{2}+\sigma _{v}^{2}\text{、}\varepsilon _i=v_{ij}+u_{ij}\text{、}\sigma ^*=\frac{\sigma _u\sigma _v}{\sigma} σ2=σu2+σv2εi=vij+uijσ=σσuσv Φ 与 φ \varPhi \text{与}\varphi Φφ分别为标准正态分布的密度函数和分布函数

因为已知
σ 2 = σ u 2 + σ v 2 、 γ = σ u 2 σ u 2 + σ v 2 \sigma ^2=\sigma _{u}^{2}+\sigma _{v}^{2}\text{、}\gamma =\frac{\sigma _{u}^{2}}{\sigma _{u}^{2}+\sigma _{v}^{2}} σ2=σu2+σv2γ=σu2+σv2σu2

所以这个等式的值是可以计算的

从而 v 也可以计算出来

E ( v i ∣ ε i ) = ε i − E ( u i ∣ ε i ) E\left( v_i|\varepsilon _i \right) =\varepsilon _i-E\left( u_i|\varepsilon _i \right) E(viεi)=εiE(uiεi)

则投入变量1的调整至为
在这里插入图片描述


开始用excel计算
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
接下来的步骤(简写),直接对应公式就可以完成在这里插入图片描述
最后,调整后的投入1

在这里插入图片描述
同理,完成投入2,投入3

最终得到如下结果
在这里插入图片描述

当然,做的时候不会这样一个一个的算,很麻烦,有excel模板,直接套用就行

第二阶段SFA回归数据.xls

在这里插入图片描述
在这里插入图片描述

第三阶段

利用调整后的投入量,和原始的产出量,再次利用DEA模型估计各个决策单元的各个效率值。

之后可以做一个符号秩检验,检验经过调整后,是否有显著差异,如果没有差异,第二阶段就没多大意义了。

符号秩检验可以用stata做

比如对综合技术效率进行检验

ranksum t,by(g) porder
评论 49
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值