参考B站视频三阶段DEA操作步骤,做个简单的笔记,便于用的时候复习
https://www.bilibili.com/video/BV1F4411n75p?p=1
使用到的软件:DEAP2.1、Frontier4.1、excel
根据数据包络法对DMU的内在要求,即DMU的个数要大于等于所有的投入变量和产出变量的两倍
第一阶段:传统DEA模型
这里原始数据是截取博主给的数据中的前10个(主要是记录操作步骤) :
3个投入,2个产出,2个环境变量
运用DEAP2.1软件进行效率分析
(1)打开123.DTA,用于存储数据,产出在前、投入在后
将数据复制到 123.dta
crste = TE
vrste = PTE
scale = SE
TE表示综合效率,PTE表示纯技术效率,SE表示规模效率,满足TE=SExPTE;drs表示规模报酬递减,irs表示规模报酬递增,- 表示规模报酬不变。
第一阶段分析出来的投入产出松弛变量可能受到外部环境因素、随机误差以及内部管理因素影响,通过随机前沿分析方法(Stochastic Frontier Analysis,简称SFA)对上述因素进行测算并将其影响剔除。
(1)
然后
松弛变量S = 原始投入值 - 目标投入值
关于
这样算出来的松弛变量与DEA结果带的松弛变量结果 SUMMARY OF INPUT SLACKS 部分差距很大的原因
四阶段DEA松弛变量及模型调整问题
[经济学] 请教:DEA分析中投影变量与松弛变量之间的关系
https://bbs.pinggu.org/thread-3347318-1-1.html
其次,对效率为1的DUM,松弛变量可以令为0
注:因原始数据为残缺的,这些结果数值不必在意,主要是操作步骤
第二阶段(SFA)
理论部分我参考的是:研发投入产出效率的国际比较研究—基于三阶段DEA模型分析
以及 关于三阶段DEA模型的几点研究
实际操作运用Frontier4.1软件+ excel
投入的松弛变量作为因变量,K个环境变量作为自变量
注意:SAF只能做单产出分析,即每次只能调整一个投入变量,若有 m 个投入变量,则需要进行 m 次调整。
首先对投入1进行调整,将excel中整理好的数据复制粘贴进 EG1.DTA 中
如下图
注意顺序
第一列是评价体系的序号;第二列是时期t;.第三列是因变量;.第四列之后是K全自变量
接下来设置 EG1.ins
这里根据自己的实际情况设置参数
我这里选择
第一个 y :假设U的分布。y表示截断分布,n表示半正态分布.
第二个 y :表示时变模型,n表示非时变模型。
选择 n
其他设置保持不变.
设置好之后,运行front41.exe
输入 :
F
EG1.ins
回车之后,文件夹中会新生产一个eg1.out 文件
打开新生成的 out 文件
在使用Frontier4.1分析投入差额值时,估计回归系数使用的是最大似然法。
检验 参数是否显著(t检验是检验参数是否显著为0,参数是否有统计学意义) 以及 判断LR是否通过检验(单边误差似然检验值,为了判断使用SFA模型是否合理)
对于 t 值( t-ratio) ,一般t值大于2,通常都显著,但t值并不是最终判定标准,还需要结合 p值 一起看(计算P值的方法在下方t值分布表中有)。
以及 LR 值,单边似然比统计量LR=-2×ln (L (H0) /L (H1) )
t检验的自由度是样本数-待估参数-1,LR检验的自由度见结果:with number of restrictions
环境变量数
注:***、**、*
分别表示在1%、5%、10%的显著性水平上通过正态检验
t分布表如下
注:对
α
<
0.5
,有
t
α
<
−
t
1
−
α
\text{注:对}\alpha <0.5\text{,有}t_{\alpha}<-t_{1-\alpha}
注:对α<0.5,有tα<−t1−α
对于 gamma 值
gamma 之后有一个t值,结合数据本身的自由度,计算出P值,通过P值来看显著性。
gamma 值,其越趋近于1,表明存在环境因素对xxx效率的干扰,有必要通过公式对原始投入值进行调整。
gamma值一直都是0.999999不是代表没法继续用三阶段了,实际上只要是0-1之间就可以
还要看参数的正负性
根据投入不同而使用独立的回归方程,因而可以直观的判断各个自变量对不同差额值的影响。由于环境变量是对投入差额值进行的回归,所以当相关系数(参数)为正时,表示增加环境变量有利于投入差额值的增加,即有利于增加各投入变量浪费或增加负产出,反之亦然。
也即
系数为正说明该环境变量的增加不利于效率的提高,会造成投入要素的浪费,为负则相反,有利于提高效率。
假设参数都通过检验
接下来 就是根据公式通过excel得到调整后的投入1值
S i j = f j ( z j , β j ) + v i j + u i j S_{ij}=f^j\left( z_j,\beta _j \right) +v_{ij}+u_{ij} Sij=fj(zj,βj)+vij+uij
符合含义在前面参考文献中有
根据Frontier4.1软件,得到SFA估计的系数
β
^
0
,
β
^
1
,
β
^
2
\hat{\beta}_0,\hat{\beta}_1,\hat{\beta}_2
β^0,β^1,β^2以及
σ
2
=
σ
u
2
+
σ
v
2
、
γ
=
σ
u
2
σ
u
2
+
σ
v
2
\sigma ^2=\sigma _{u}^{2}+\sigma _{v}^{2}\text{、}\gamma =\frac{\sigma _{u}^{2}}{\sigma _{u}^{2}+\sigma _{v}^{2}}
σ2=σu2+σv2、γ=σu2+σv2σu2
从而可得到环境值
f
=
β
^
0
+
β
^
1
Z
1
+
β
^
2
Z
2
f=\hat{\beta}_0+\hat{\beta}_1Z_1+\hat{\beta}_2Z_2
f=β^0+β^1Z1+β^2Z2
其中,
Z
1
Z_1
Z1,
Z
2
Z_2
Z2为环境变量
现在主要是求 u 和 v ,可以用下面的公式得到
(1)回归的混合误差项现在是可以求得的
ε i = v i j + u i j = S − f \varepsilon_i =v_{ij}+u_{ij}=S-f εi=vij+uij=S−f
先求 u ,根据公式可用条件期望值将其代替
E ( u i ∣ ε i ) = σ ∗ [ φ ( λ ε i σ ) Φ ( λ ε i σ ) + λ ε i σ ] E\left( u_i|\varepsilon _i \right) =\sigma ^*\left[ \frac{\varphi \left( \lambda \frac{\varepsilon _i}{\sigma} \right)}{\varPhi \left( \lambda \frac{\varepsilon _i}{\sigma} \right)}+\lambda \frac{\varepsilon _i}{\sigma} \right] E(ui∣εi)=σ∗[Φ(λσεi)φ(λσεi)+λσεi]
其中 σ 2 = σ u 2 + σ v 2 、 ε i = v i j + u i j 、 σ ∗ = σ u σ v σ \sigma ^2=\sigma _{u}^{2}+\sigma _{v}^{2}\text{、}\varepsilon _i=v_{ij}+u_{ij}\text{、}\sigma ^*=\frac{\sigma _u\sigma _v}{\sigma} σ2=σu2+σv2、εi=vij+uij、σ∗=σσuσv、 Φ 与 φ \varPhi \text{与}\varphi Φ与φ分别为标准正态分布的密度函数和分布函数
因为已知
σ
2
=
σ
u
2
+
σ
v
2
、
γ
=
σ
u
2
σ
u
2
+
σ
v
2
\sigma ^2=\sigma _{u}^{2}+\sigma _{v}^{2}\text{、}\gamma =\frac{\sigma _{u}^{2}}{\sigma _{u}^{2}+\sigma _{v}^{2}}
σ2=σu2+σv2、γ=σu2+σv2σu2
所以这个等式的值是可以计算的
从而 v 也可以计算出来
E ( v i ∣ ε i ) = ε i − E ( u i ∣ ε i ) E\left( v_i|\varepsilon _i \right) =\varepsilon _i-E\left( u_i|\varepsilon _i \right) E(vi∣εi)=εi−E(ui∣εi)
则投入变量1的调整至为
开始用excel计算
接下来的步骤(简写),直接对应公式就可以完成
最后,调整后的投入1
同理,完成投入2,投入3
最终得到如下结果
当然,做的时候不会这样一个一个的算,很麻烦,有excel模板,直接套用就行
第三阶段
利用调整后的投入量,和原始的产出量,再次利用DEA模型估计各个决策单元的各个效率值。
之后可以做一个符号秩检验,检验经过调整后,是否有显著差异,如果没有差异,第二阶段就没多大意义了。
符号秩检验可以用stata做
比如对综合技术效率进行检验
ranksum t,by(g) porder