n 维向量

目录:点我

思维导图下载:点我

N维向量

一、概念和应用

n 个数 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an 所组成的有序数组 α = [ a 1 , a 2 , ⋯   , a n ] T \alpha=[a_1,a_2,\cdots,a_n]^T α=[a1,a2,,an]T α = [ a 1 , a 2 , ⋯   , a n ] \alpha=[a_1,a_2,\cdots,a_n] α=[a1,a2,,an] 称为 n 维向量,其中 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an 称为向量 α \alpha α 的分量(或坐标),前一个表示称为列向量,后者称为行向量。

设 n 维向量 α = [ a 1 , a 2 , ⋯   , a n ] T , β = [ b 1 , b 2 , ⋯   , b n ] T \alpha=[a_1,a_2,\cdots,a_n]^T,\beta=[b_1,b_2,\cdots,b_n]^T α=[a1,a2,,an]T,β=[b1,b2,,bn]T ,则:

1. 向量加法

α + β = [ a 1 + b 1 , a 2 + b 2 , ⋯   , a n + b n ] T \alpha+\beta=[a_1+b_1,a_2+b_2,\cdots,a_n+b_n]^T α+β=[a1+b1,a2+b2,,an+bn]T

2. 数乘向量

k α = [ k a 1 , k a 2 , ⋯   , k a n ] T k\alpha=[ka_1,ka_2,\cdots,ka_n]^T kα=[ka1,ka2,,kan]T

3. 向量乘积

( α , β ) = α T β = β T α = a 1 b 1 + a 2 b 2 + ⋯ + a n b n (\alpha,\beta)=\alpha^T\beta=\beta^T\alpha=a_1b_1+a_2b_2+\cdots+a_nb_n (α,β)=αTβ=βTα=a1b1+a2b2++anbn

二、定义

  1. α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 是 n 维向量, k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn 是一组实数,称 k 1 α 1 + k 2 α 2 + ⋯ + k n α n k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n k1α1+k2α2++knαn α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 的线性组合。
  2. 对 n 维向量 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs β \beta β ,若存在实数 k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks ,使得 k 1 α 1 + k 2 α 2 + ⋯ + k s α s = β k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s=\beta k1α1+k2α2++ksαs=β ,则称 β \beta β α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 的线性组合,或者说 β \beta β 可由 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性表出。
  3. 对 n 维向量 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs ,如果存在不全为 0 的数使得 k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s=0 k1α1+k2α2++ksαs=0 ,则称向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性相关,否则,称向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性无关。
  4. 设有两个 n 维向量组 (Ⅰ) α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs ;(Ⅱ) β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,,βt ;如果 (Ⅰ) 中每个向量 α i ( i = 1 , 2 , ⋯   , s ) \alpha_i(i=1,2,\cdots,s) αi(i=1,2,,s) 都可由 (Ⅱ) 中的向量 β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,,βt 线性表出,则称向量组 (Ⅰ) 可由向量组 (Ⅱ) 线性表出。如果这两个向量组可以互相线性表出,则称这两个向量组等价。
  5. 在向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 中,若存在 r 个向量 α i 1 , α i 2 , ⋯   , α i r \alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_r} αi1,αi2,,αir 线性无关,再加任一个向量 α j ( j = 1 , 2 , ⋯   , s ) \alpha_j(j=1,2,\cdots,s) αj(j=1,2,,s) ,向量组 α i 1 , α i 2 , ⋯   , α i r , α j \alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_r},\alpha_j αi1,αi2,,αir,αj 就线性相关,则称 α i 1 , α i 2 , ⋯   , α i r \alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_r} αi1,αi2,,αir 是向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 的一个极大线性无关组。
  6. 向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 的极大线性无关组中所含向量的个数 r 称为这个向量组的秩。

三、定理

1. 等价组:

  • 向量 β \beta β 可由向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性表出;
  • 非齐次线性方程组 [ α 1 , α 2 , ⋯   , α s ] [ x 1 x 2 ⋯ x s ] = β [\alpha_1,\alpha_2,\cdots,\alpha_s]\begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_s \end{bmatrix} = \beta [α1,α2,,αs]x1x2xs=β 有解;
  • r [ α 1 , α 2 , ⋯   , α s ] = r [ α 1 , α 2 , ⋯   , α s , β ] r[\alpha_1,\alpha_2,\cdots,\alpha_s]=r[\alpha_1,\alpha_2,\cdots,\alpha_s,\beta] r[α1,α2,,αs]=r[α1,α2,,αs,β] .

2. 等价组:

  • 向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性相关;
  • 齐次线性方程组 [ α 1 , α 2 , ⋯   , α s ] [ x 1 x 2 ⋯ x s ] = 0 [\alpha_1,\alpha_2,\cdots,\alpha_s]\begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_s \end{bmatrix} = 0 [α1,α2,,αs]x1x2xs=0 有非零解;
  • 向量组的秩 r ( α 1 , α 2 , ⋯   , α s ) < s r(\alpha_1,\alpha_2,\cdots,\alpha_s)<s r(α1,α2,,αs)<s .
  • 推论: n n n n n n 维向量 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 线性相关的充分必要条件是行列式 ∣ α 1 , α 2 , ⋯   , α n ∣ = 0 |\alpha_1,\alpha_2,\cdots,\alpha_n|=0 α1,α2,,αn=0 .
  • 推论: n + 1 n+1 n+1 n n n 维向量一定线性相关。

3. 定理:

  • 任何部分组 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr 相关等价于整体组 α 1 , α 2 , ⋯   , α r , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_r,\cdots,\alpha_s α1,α2,,αr,,αs 相关。
  • 整体组 α 1 , α 2 , ⋯   , α r , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_r,\cdots,\alpha_s α1,α2,,αr,,αs 无关等价于任何部分组 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr 无关。

4. 定理:

  • α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm 线性无关等价于延伸组 α 1 ~ , α 2 ~ , ⋯   , α m ~ \tilde{\alpha_1},\tilde{\alpha_2},\cdots,\tilde{\alpha_m} α1~,α2~,,αm~ 线性无关。
  • α 1 ~ , α 2 ~ , ⋯   , α m ~ \tilde{\alpha_1},\tilde{\alpha_2},\cdots,\tilde{\alpha_m} α1~,α2~,,αm~ 线性相关等价于缩短组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm 线性相关。

5. 定理:

如果 α 1 , α 2 , ⋯   , α s ( s ≥ 2 ) \alpha_1,\alpha_2,\cdots,\alpha_s(s\ge2) α1,α2,,αs(s2) 线性相关,则其中必有一个向量可用其余的向量线性表出;反之,若有一个向量可用其余的 s − 1 s-1 s1 个向量线性表出,则这 s s s 个向量必线性相关。

6. 定理:

如果 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性无关, α 1 , α 2 , ⋯   , α s , β \alpha_1,\alpha_2,\cdots,\alpha_s,\beta α1,α2,,αs,β 线性相关,则 β \beta β 可由 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性表出,且表示法唯一。

7. 定理:

  • 如果向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 可由向量组 β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,,βt 线性表出,而且 s > t s>t s>t ,那么 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性相关。即如果多数向量能用少数向量线性表出,那么多数向量一定线性相关。
  • 推论:如果 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性相关,且它可由 β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,,βt 线性表出,则 s ≤ t s\le t st .

8. 定理:

  • α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 可由 β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,,βt 线性表出,则 r ( α 1 , α 2 , ⋯   , α s ) ≤ r ( β 1 , β 2 , ⋯   , β t ) r(\alpha_1,\alpha_2,\cdots,\alpha_s)\le r(\beta_1,\beta_2,\cdots,\beta_t) r(α1,α2,,αs)r(β1,β2,,βt) .
  • 推论:等价向量组的秩相等。

9. 定理:

  • 如果 r ( A ) = r r(A)=r r(A)=r ,则 A A A 中有 r r r 个线性无关的列向量,而其他列向量都是这 r r r 个线性无关列向量的线性组合,也就是 r ( A ) = A r(A)=A r(A)=A 的列秩。
  • 一般地, r ( a ) = A r(a)=A r(a)=A 的行秩 = A =A =A 的列秩。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BeZer0

打赏一杯奶茶支持一下作者吧~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值