考研数学常用基础知识

目录:点我

思维导图下载:点我

高数预备知识

一、数列

1. 等差数列

a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n1)d
S n = n 2 [ 2 a 1 + ( n − 1 ) d ] = n 2 ( a 1 + a n ) = n a 1 + n ( n − 1 ) 2 d S_n=\frac{n}{2}\left[2a_1+(n-1)d\right]=\frac{n}{2}(a_1+a_n)=na_1+\frac{n(n-1)}{2}d Sn=2n[2a1+(n1)d]=2n(a1+an)=na1+2n(n1)d

2.等比数列

a n = a 1 q n − 1 a_n=a_1q^{n-1} an=a1qn1
S n = a 1 ( 1 − q n ) 1 − q S_n=\frac{a_1(1-q^n)}{1-q} Sn=1qa1(1qn)

3. 前n项和

1 + 2 + ⋯ + n = n ( n + 1 ) 2 1+2+\dots+n=\frac{n(n+1)}{2} 1+2++n=2n(n+1)
1 2 + 2 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 1^2+2^2+\dots+n^2=\frac{n(n+1)(2n+1)}{6} 12+22++n2=6n(n+1)(2n+1)
1 1 × 2 + 1 2 × 3 + ⋯ + 1 n × ( n + 1 ) = n n + 1 \frac{1}{1\times2}+\frac{1}{2\times3}+\dots+\frac{1}{n\times(n+1)}=\frac{n}{n+1} 1×21+2×31++n×(n+1)1=n+1n

二、三角函数

1. 基本关系

1 + tan ⁡ 2 α = sec ⁡ 2 α 1+\tan^2\alpha=\sec^2\alpha 1+tan2α=sec2α
1 + cot ⁡ 2 α = csc ⁡ 2 α 1+\cot^2\alpha=\csc^2\alpha 1+cot2α=csc2α
a sin ⁡ x + b sin ⁡ x = a 2 + b 2 sin ⁡ ( x + φ ) a\sin x+b\sin x=\sqrt{a^2+b^2}\sin(x+\varphi) asinx+bsinx=a2+b2 sin(x+φ)

2. 诱导公式

π 2 − α \frac{\pi}{2}-\alpha 2πα π 2 + α \frac{\pi}{2}+\alpha 2π+α π − α \pi-\alpha πα π + α \pi+\alpha π+α 3 π 2 − α \frac{3\pi}{2}-\alpha 23πα 3 π 2 + α \frac{3\pi}{2}+\alpha 23π+α 2 π − α 2\pi-\alpha 2πα
sin ⁡ θ \sin\theta sinθ cos ⁡ α \cos\alpha cosα cos ⁡ α \cos\alpha cosα sin ⁡ α \sin\alpha sinα − sin ⁡ α -\sin\alpha sinα − cos ⁡ α -\cos\alpha cosα − cos ⁡ α -\cos\alpha cosα − sin ⁡ α -\sin\alpha sinα
cos ⁡ θ \cos\theta cosθ sin ⁡ α \sin\alpha sinα − sin ⁡ α -\sin\alpha sinα − cos ⁡ α -\cos\alpha cosα − cos ⁡ α -\cos\alpha cosα − sin ⁡ α -\sin\alpha sinα sin ⁡ α \sin\alpha sinα cos ⁡ α \cos\alpha cosα
tan ⁡ θ \tan\theta tanθ cot ⁡ α \cot\alpha cotα − cot ⁡ α -\cot\alpha cotα − tan ⁡ α -\tan\alpha tanα tan ⁡ α \tan\alpha tanα cot ⁡ α \cot\alpha cotα − cot ⁡ α -\cot\alpha cotα − tan ⁡ α -\tan\alpha tanα
cot ⁡ θ \cot\theta cotθ tan ⁡ α \tan\alpha tanα − tan ⁡ α -\tan\alpha tanα − cot ⁡ α -\cot\alpha cotα cot ⁡ α \cot\alpha cotα tan ⁡ α \tan\alpha tanα − tan ⁡ α -\tan\alpha tanα − cot ⁡ α -\cot\alpha cotα

3. 倍角公式

sin ⁡ 3 α = − 4 sin ⁡ 3 α + 3 sin ⁡ α \sin3\alpha=-4\sin^3\alpha+3\sin\alpha sin3α=4sin3α+3sinα
cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α \cos3\alpha=4\cos^3\alpha-3\cos\alpha cos3α=4cos3α3cosα
tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha} tan2α=1tan2α2tanα
cot ⁡ 2 α = cot ⁡ 2 α − 1 2 cot ⁡ α \cot2\alpha=\frac{\cot^2\alpha-1}{2\cot\alpha} cot2α=2cotαcot2α1

4. 半角公式

tan ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α = sin ⁡ α 1 + cos ⁡ α = ± 1 − cos ⁡ α 1 + cos ⁡ α \tan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} tan2α=sinα1cosα=1+cosαsinα=±1+cosα1cosα
cot ⁡ α 2 = sin ⁡ α 1 − cos ⁡ α = 1 + cos ⁡ α sin ⁡ α = ± 1 + cos ⁡ α 1 − cos ⁡ α \cot\frac{\alpha}{2}=\frac{\sin\alpha}{1-\cos\alpha}=\frac{1+\cos\alpha}{\sin\alpha}=\pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} cot2α=1cosαsinα=sinα1+cosα=±1cosα1+cosα

5. 和差公式

sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β \sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta sin(α±β)=sinαcosβ±cosαsinβ
cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β \cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta cos(α±β)=cosαcosβsinαsinβ
tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β \tan(\alpha\pm\beta)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} tan(α±β)=1tanαtanβtanα±tanβ
cot ⁡ ( α ± β ) = cot ⁡ α cot ⁡ β ∓ 1 cot ⁡ β ∓ cot ⁡ α \cot(\alpha\pm\beta)=\frac{\cot\alpha\cot\beta\mp1}{\cot\beta\mp\cot\alpha} cot(α±β)=cotβcotαcotαcotβ1

6. 积化和差

sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)]
cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)sin(αβ)]
cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos\alpha\cos\beta=\frac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(αβ)]
sin ⁡ α sin ⁡ β = 1 2 [ cos ⁡ ( α − β ) − cos ⁡ ( α + β ) ] \sin\alpha\sin\beta=\frac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)] sinαsinβ=21[cos(αβ)cos(α+β)]

7. 和差化积

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2αβ
sin ⁡ α − sin ⁡ β = 2 sin ⁡ α − β 2 cos ⁡ α + β 2 \sin\alpha-\sin\beta=2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} sinαsinβ=2sin2αβcos2α+β
cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2αβ
cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} cosαcosβ=2sin2α+βsin2αβ

8. 万能公式

当 μ = tan ⁡ x 2 ( − π < x < π ) , 则 sin ⁡ x = 2 μ 1 + μ 2 当\mu=\tan\frac{x}{2}(-\pi<x<\pi),则\sin x=\frac{2\mu}{1+\mu^2} μ=tan2x(π<x<π)sinx=1+μ22μ

三、一元二次方程

1. 韦达定理

x 1 + x 2 = − b a x_1+x_2=-\frac{b}{a} x1+x2=ab
x 1 x 2 = c a x_1x_2=\frac{c}{a} x1x2=ac

2. 抛物线顶点

设 y = a x 2 + b x + c , 则 顶 点 : p ( − b 2 a , c − b 2 4 a ) 设y=ax^2+bx+c,则顶点:p(-\frac{b}{2a},c-\frac{b^2}{4a}) y=ax2+bx+cp(2ab,c4ab2)

3. 点到直线距离

∣ A x 0 + B y 0 + C ∣ A 2 + B 2 \frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}} A2+B2 Ax0+By0+C

四、因式分解

( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a+b)3=a3+3a2b+3ab2+b3
a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3=(a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)
a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)
n 为 正 整 数 : a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + ⋯ + a b n − 2 + b n − 1 ) n为正整数:a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+\dots+ab^{n-2}+b^{n-1}) nanbn=(ab)(an1+an2b++abn2+bn1)
n 为 正 偶 数 : a n − b n = ( a + b ) ( a n − 1 − a n − 2 b + ⋯ + a b n − 2 − b n − 1 ) n为正偶数:a^n-b^n=(a+b)(a^{n-1}-a^{n-2}b+\dots+ab^{n-2}-b^{n-1}) nanbn=(a+b)(an1an2b++abn2bn1)
n 为 正 奇 数 : a n + b n = ( a + b ) ( a n − 1 − a n − 2 b + ⋯ − a b n − 2 + b n − 1 ) n为正奇数:a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+\dots-ab^{n-2}+b^{n-1}) nan+bn=(a+b)(an1an2b+abn2+bn1)
二 项 式 定 理 : ( a + b ) n = lim ⁡ k = 0 n C n k a n − k b k 二项式定理:(a+b)^n=\lim^n_{k=0}C^k_na^{n-k}b^k (a+b)n=k=0limnCnkankbk

五、阶乘

( 2 n ) ! ! = 2 ⋅ 4 ⋅ 6 … ( 2 n ) = 2 n ⋅ n ! (2n)!!=2\cdot4\cdot6\dots(2n)=2^n\cdot n! (2n)!!=246(2n)=2nn!
( 2 n − 1 ) ! ! = 1 ⋅ 3 ⋅ 5 … ( 2 n − 1 ) (2n-1)!!=1\cdot3\cdot5\dots(2n-1) (2n1)!!=135(2n1)

六、不等式

1. 基础

∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a\pm b|\le|a|+|b| a±ba+b
∣ ∣ a ∣ + ∣ b ∣ ∣ ≤ ∣ a − b ∣ ||a|+|b||\le|a-b| a+bab
∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int_a^bf(x)dx|\le\int_a^b|f(x)|dx abf(x)dxabf(x)dx

2. 基础

a b ≤ a + b 2 ≤ a 2 + b 2 2 ( a , b > 0 ) \sqrt{ab}\le\frac{a+b}{2}\le\sqrt{\frac{a^2+b^2}{2}}(a,b>0) ab 2a+b2a2+b2 (a,b>0)

3. 重要

设 a > b > 0 , 则 { a n > b n , n > 0 a n < b n , n < 0 设a>b>0,则 \left\{\begin{matrix} a^n>b^n, & n>0 \\ a^n<b^n, & n<0 \end{matrix}\right. a>b>0{an>bn,an<bn,n>0n<0

4. 低频

若 0 < a < x < b , 0 < c < y < d , 则 c b < y x < d a 若0<a<x<b,0<c<y<d,则\frac{c}{b}<\frac{y}{x}<\frac{d}{a} 0<a<x<b0<c<y<dbc<xy<ad

5. 重要

sin ⁡ x < x < tan ⁡ x ( 0 < x < π 2 ) \sin x<x<\tan x(0<x<\frac{\pi}{2}) sinx<x<tanx(0<x<2π)

6. 重要

sin ⁡ x < x ( x > 0 ) \sin x<x(x>0) sinx<x(x>0)

7. 低频

arcsin ⁡ x ≤ x ≤ arcsin ⁡ x ( 0 ≤ x ≤ 1 ) \arcsin x\le x\le\arcsin x(0\le x\le1) arcsinxxarcsinx(0x1)

8. 重要

e x ≥ x + 1 e^x\ge x+1 exx+1

9. 重要

x − 1 ≥ ln ⁡ x ( x > 0 ) x-1\ge\ln x(x>0) x1lnx(x>0)

10. 低频

1 1 + x < ln ⁡ ( 1 + 1 x ) < 1 x ( x > 0 ) \frac{1}{1+x}<\ln(1+\frac{1}{x})<\frac{1}{x}(x>0) 1+x1<ln(1+x1)<x1(x>0)

七、泰勒公式

sin ⁡ x = x − x 3 3 ! + o ( x 3 ) \sin x=x-\frac{x^3}{3!}+o(x^3) sinx=x3!x3+o(x3)
cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) cosx=12!x2+4!x4+o(x4)
arcsin ⁡ x = x + x 3 3 ! + o ( x 3 ) \arcsin x=x+\frac{x^3}{3!}+o(x^3) arcsinx=x+3!x3+o(x3)
tan ⁡ x = x + x 3 3 + o ( x 3 ) \tan x=x+\frac{x^3}{3}+o(x^3) tanx=x+3x3+o(x3)
arctan ⁡ x = x − x 3 3 + o ( x 3 ) \arctan x=x-\frac{x^3}{3}+o(x^3) arctanx=x3x3+o(x3)
ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 ) \ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3) ln(1+x)=x2x2+3x3+o(x3)
e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3) ex=1+x+2!x2+3!x3+o(x3)
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) (1+x)^\alpha=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+o(x^2) (1+x)α=1+αx+2!α(α1)x2+o(x2)
1 1 − x = 1 + x + x 2 + x 3 + o ( x 3 ) \frac{1}{1-x}=1+x+x^2+x^3+o(x^3) 1x1=1+x+x2+x3+o(x3)
1 + x 2 = 1 + x 2 2 − x 4 8 + o ( x 4 ) \sqrt{1+x^2}=1+\frac{x^2}{2}-\frac{x^4}{8}+o(x^4) 1+x2 =1+2x28x4+o(x4)
y = f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n = ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n y=f(x)=\sum_{n=0}^\infty\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n=\sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n y=f(x)=n=0n!f(n)(x0)(xx0)n=n=0n!f(n)(0)xn

八、等价无穷小

1. 基础

sin ⁡ x ∼ x 、 tan ⁡ x ∼ x 、 arcsin ⁡ x ∼ x 、 arcsin ⁡ x ∼ x 、 ln ⁡ ( 1 + x ) ∼ x 、 e x − 1 ∼ x \sin x\sim x、\tan x\sim x、\arcsin x\sim x、\arcsin x\sim x、\ln(1+x)\sim x、e^x-1\sim x sinxxtanxxarcsinxxarcsinxxln(1+x)xex1x

2. 重要

a x − 1 ∼ x ln ⁡ a 、 1 − cos ⁡ x ∼ 1 2 x 2 、 ( 1 + x ) α − 1 ∼ α x 、 1 − cos ⁡ α x ∼ a 2 x 2 a^x-1\sim x\ln a、1-\cos x\sim\frac{1}{2}x^2、(1+x)^\alpha-1\sim\alpha x、1-\cos^\alpha x\sim\frac{a}{2}x^2 ax1xlna1cosx21x2(1+x)α1αx1cosαx2ax2

3. 两个重要极限

lim ⁡ x ⟶ ∞ sin ⁡ x x = 1 \lim_{x\longrightarrow\infty}\frac{\sin x}{x}=1 xlimxsinx=1
lim ⁡ x ⟶ ∞ ( 1 + 1 x ) x = e \lim_{x\longrightarrow\infty}(1+\frac{1}{x})^x=e xlim(1+x1)x=e

九、导数公式

1. 基本求导公式

( log ⁡ α x ) ′ = 1 x ln ⁡ α ( α > 0 , α ≠ 0 ) (\log_\alpha x)'=\frac{1}{x\ln\alpha}(\alpha>0,\alpha\ne0) (logαx)=xlnα1(α>0,α=0)
( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1
( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)'=\sec^2x (tanx)=sec2x
( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1
( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)'=-\csc^2x (cotx)=csc2x
( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)'=\frac{1}{1+x^2} (arctanx)=1+x21
( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=-\frac{1}{1+x^2} (arccotx)=1+x21
( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)'=\sec x\tan x (secx)=secxtanx
( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)'=-\csc x\cot x (cscx)=cscxcotx
[ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 \left[\ln\left(x+\sqrt{x^2+1}\right)\right]'=\frac{1}{\sqrt{x^2+1}} [ln(x+x2+1 )]=x2+1 1
[ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 \left[\ln\left(x+\sqrt{x^2-1}\right)\right]'=\frac{1}{\sqrt{x^2-1}} [ln(x+x21 )]=x21 1

2. 参数方程

d y d x = d y d t d x d t \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}} dxdy=dtdxdtdy
d 2 y d x 2 = d ( d y d t ) d t d x d t = y ′ ′ ( t ) x ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) [ x ′ ( t ) ] 3 \frac{d^2y}{dx^2}=\frac{\frac{d(\frac{dy}{dt})}{dt}}{\frac{dx}{dt}}=\frac{y''(t)x'(t)-x''(t)y'(t)}{\left[x'\left(t\right)\right]^3} dx2d2y=dtdxdtd(dtdy)=[x(t)]3y(t)x(t)x(t)y(t)

3. 反函数

y x ′ = d y d x = 1 d x d y = 1 x y ′ y'_x=\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}=\frac{1}{x'_y} yx=dxdy=dydx1=xy1
y x x ′ ′ = d 2 y d x 2 = d ( d y d x ) d x = d ( 1 x y ′ ) d x = d ( 1 x y ′ ) d y ⋅ 1 x y ′ = − x y y ′ ′ ( x y ′ ) 3 y''_{xx}=\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{d(\frac{1}{x'_y})}{dx}=\frac{d(\frac{1}{x'_y})}{dy}\cdot\frac{1}{x'_y}=-\frac{x''_{yy}}{(x'_y)^3} yxx=dx2d2y=dxd(dxdy)=dxd(xy1)=dyd(xy1)xy1=(xy)3xyy

4. 变限积分求导公式

F ( x ) = ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t F(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}f(t)dt F(x)=φ1(x)φ2(x)f(t)dt
F ′ ( x ) = f [ φ 2 ( x ) ] φ 2 ′ ( x ) − f [ φ 1 ( x ) ] φ 1 ′ ( x ) F'(x)=f[\varphi_2(x)]\varphi_2'(x)-f[\varphi_1(x)]\varphi_1'(x) F(x)=f[φ2(x)]φ2(x)f[φ1(x)]φ1(x)

5. 莱布尼茨公式

( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum_{k=0}^nC_n^ku^{(n-k)}v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)

6. 曲率

曲 率 : k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 曲率:k=\frac{|y''|}{(1+y'^2)^\frac{3}{2}} k=(1+y2)23y
极 坐 标 : k = r 2 + 2 r ′ 2 − r r ′ ′ ( r 2 + r ′ 2 ) 3 2 极坐标:k=\frac{r^2+2r'^2-rr''}{(r^2+r'^2)^\frac{3}{2}} k=(r2+r2)23r2+2r2rr
曲 率 中 心 : ( x − y ′ ( y ′ 2 + 1 ) y ′ ′ , x + y ′ 2 + 1 y ′ ′ ) 曲率中心:(x-\frac{y'(y'^2+1)}{y''},x+\frac{y'^2+1}{y''}) (xyy(y2+1),x+yy2+1)

十、积分公式

1. 不定积分

∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int\frac{1}{x}dx=\ln|x|+C x1dx=lnx+C
∫ a x d x = a x ln ⁡ a + C   ( a > 0 且 a ≠ 0 ) \int a^xdx=\frac{a^x}{\ln a}+C~(a>0且a\ne0) axdx=lnaax+C (a>0a=0)
∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int\tan xdx=-\ln|\cos x|+C tanxdx=lncosx+C
∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int\cot xdx=\ln|\sin x|+C cotxdx=lnsinx+C
∫ 1 cos ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int\frac{1}{\cos x}dx=\ln|\sec x+\tan x|+C cosx1dx=lnsecx+tanx+C
∫ d x sin ⁡ x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int\frac{dx}{\sin x}=\ln|\csc x-\cot x|+C sinxdx=lncscxcotx+C
∫ sec ⁡ 2 x d x = tan ⁡ x + C \int\sec^2xdx=\tan x+C sec2xdx=tanx+C
∫ csc ⁡ 2 x d x = − cot ⁡ x + C \int\csc^2xdx=-\cot x+C csc2xdx=cotx+C
∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \int\sec x\tan xdx=\sec x+C secxtanxdx=secx+C
∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C \int\csc x\cot xdx=-\csc x+C cscxcotxdx=cscx+C
∫ 1 1 + x 2 d x = arctan ⁡ x + C \int\frac{1}{1+x^2}dx=\arctan x+C 1+x21dx=arctanx+C
∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C ( a > 0 ) \int\frac{1}{a^2+x^2}dx=\frac{1}{a}\arctan\frac{x}{a}+C(a>0) a2+x21dx=a1arctanax+C(a>0)
∫ 1 1 − x 2 d x = arcsin ⁡ x + C \int\frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C 1x2 1dx=arcsinx+C
∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ( a > 0 ) \int\frac{1}{\sqrt{a^2-x^2}}dx=\arcsin\frac{x}{a}+C(a>0) a2x2 1dx=arcsinax+C(a>0)
∫ 1 x 2 + a 2 d x = ln ⁡ ( x + x 2 + a 2 ) + C \int\frac{1}{\sqrt{x^2+a^2}}dx=\ln(x+\sqrt{x^2+a^2})+C x2+a2 1dx=ln(x+x2+a2 )+C
∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ( ∣ x ∣ > ∣ a ∣ ) \int\frac{1}{\sqrt{x^2-a^2}}dx=\ln|x+\sqrt{x^2-a^2}|+C(|x|>|a|) x2a2 1dx=lnx+x2a2 +C(x>a)
∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int\frac{1}{x^2-a^2}dx=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C x2a21dx=2a1lnx+axa+C
∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ x + a x − a ∣ + C \int\frac{1}{a^2-x^2}dx=\frac{1}{2a}\ln|\frac{x+a}{x-a}|+C a2x21dx=2a1lnxax+a+C
∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + x 2 a 2 − x 2 + C ( a > ∣ x ∣ ≥ 0 ) \int\sqrt{a^2-x^2}dx=\frac{a^2}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C(a>|x|\ge0) a2x2 dx=2a2arcsinax+2xa2x2 +C(a>x0)
∫ sin ⁡ 2 x d x = x 2 − sin ⁡ 2 x 4 + C \int\sin^2xdx=\frac{x}{2}-\frac{\sin2x}{4}+C sin2xdx=2x4sin2x+C
∫ cos ⁡ 2 x d x = x 2 + sin ⁡ 2 x 4 + C \int\cos^2xdx=\frac{x}{2}+\frac{\sin2x}{4}+C cos2xdx=2x+4sin2x+C
∫ tan ⁡ 2 x d x = tan ⁡ x − x + C \int\tan^2xdx=\tan x-x+C tan2xdx=tanxx+C
∫ cot ⁡ 2 x d x = − cot ⁡ x − x + C \int\cot^2xdx=-\cot x-x+C cot2xdx=cotxx+C

2. 定积分

偶 函 数 : ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x 偶函数:\int_{-a}^{a}f(x)dx=2\int_0^af(x)dx aaf(x)dx=20af(x)dx
奇 函 数 : ∫ − a a = 0 奇函数:\int_{-a}^a=0 aa=0
∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x = π ∫ 0 π 2 f ( sin ⁡ x ) d x \int_0^\pi xf(\sin x)dx=\frac{\pi}{2}\int_0^\pi f(\sin x)dx=\pi\int_0^\frac{\pi}{2}f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx
∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x \int_0^\frac{\pi}{2}f(\sin x)dx=\int_0^\frac{\pi}{2}f(\cos x)dx 02πf(sinx)dx=02πf(cosx)dx
∫ 0 π 2 f ( sin ⁡ x , cos ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x , sin ⁡ x ) d x \int_0^\frac{\pi}{2}f(\sin x,\cos x)dx=\int_0^\frac{\pi}{2}f(\cos x,\sin x)dx 02πf(sinx,cosx)dx=02πf(cosx,sinx)dx
∫ a b f ( x ) d x = ∫ − π 2 π 2 f ( a + b 2 + b − a 2 sin ⁡ t ) ⋅ b − a 2 cos ⁡ t d t \int_a^bf(x)dx=\int_{-\frac{\pi}{2}}^\frac{\pi}{2}f(\frac{a+b}{2}+\frac{b-a}{2}\sin t)\cdot\frac{b-a}{2}\cos tdt abf(x)dx=2π2πf(2a+b+2basint)2bacostdt
∫ 1 x y f ( t ) d t = x ∫ 1 y f ( t ) d t + y ∫ 1 x f ( t ) d t \int_1^{xy}f(t)dt=x\int_1^yf(t)dt+y\int_1^xf(t)dt 1xyf(t)dt=x1yf(t)dt+y1xf(t)dt

3. 分部积分法

∫ u d v = u v − ∫ v d u . \int udv=uv-\int vdu. udv=uvvdu.
∫ u v ( n + 1 ) d x = u v ( n ) − u ′ v ( n − 1 ) + u ′ ′ v ( n − 2 ) − ⋯ + ( − 1 ) n u ( n ) v + ( − 1 ) n + 1 ∫ u ( n + 1 ) v d x . \int uv^{(n+1)}dx=uv^{(n)}-u'v^{(n-1)}+u''v^{(n-2)}-\cdots+(-1)^nu^{(n)}v+(-1)^{n+1}\int u^{(n+1)}vdx. uv(n+1)dx=uv(n)uv(n1)+uv(n2)+(1)nu(n)v+(1)n+1u(n+1)vdx.

4. 区间再现公式

∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_a^bf(x)dx=\int_a^bf(a+b-x)dx abf(x)dx=abf(a+bx)dx
∫ a b f ( x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int_a^bf(x)dx=\frac{1}{2}\int_a^b[f(x)+f(a+b-x)]dx abf(x)dx=21ab[f(x)+f(a+bx)]dx
∫ a b f ( x ) d x = ∫ a a + b 2 [ f ( x ) + f ( a + b − x ) ] d x \int_a^bf(x)dx=\int_a^\frac{a+b}{2}[f(x)+f(a+b-x)]dx abf(x)dx=a2a+b[f(x)+f(a+bx)]dx

5. 华里士公式

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 … 2 3 ⋅ 1 n 为 大 于 1 的 奇 数 n − 1 n ⋅ n − 3 n − 2 … 1 2 ⋅ π 2 n 为 正 偶 数 \int_0^\frac{\pi}{2}\sin^nxdx=\int_0^\frac{\pi}{2}\cos^nxdx= \left\{\begin{matrix} \frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{2}{3}\cdot1 & n为大于1的奇数 \\ \frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{1}{2}\cdot\frac{\pi}{2} & n为正偶数 \end{matrix}\right. 02πsinnxdx=02πcosnxdx={nn1n2n3321nn1n2n3212πn1n
∫ 0 π sin ⁡ n x d x = { 2 ⋅ n − 1 n ⋅ n − 3 n − 2 … 2 3 ⋅ 1 n 为 大 于 1 的 奇 数 2 ⋅ n − 1 n ⋅ n − 3 n − 2 … 1 2 ⋅ π 2 n 为 正 偶 数 \int_0^\pi\sin^nxdx= \left\{\begin{matrix} 2\cdot\frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{2}{3}\cdot1 & n为大于1的奇数 \\ 2\cdot\frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{1}{2}\cdot\frac{\pi}{2} & n为正偶数 \end{matrix}\right. 0πsinnxdx={2nn1n2n33212nn1n2n3212πn1n
∫ 0 π cos ⁡ n x d x = { 0 n 为 正 奇 数 2 ⋅ n − 1 n ⋅ n − 3 n − 2 … 1 2 ⋅ π 2 n 为 正 偶 数 \int_0^\pi\cos^nxdx= \left\{\begin{matrix} 0 & n为正奇数 \\ 2\cdot\frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{1}{2}\cdot\frac{\pi}{2} & n为正偶数 \end{matrix}\right. 0πcosnxdx={02nn1n2n3212πnn
{ ∫ 0 2 π sin ⁡ n x d x ∫ 0 2 π cos ⁡ n x d x = { 0 n 为 正 奇 数 4 ⋅ n − 1 n ⋅ n − 3 n − 2 … 1 2 ⋅ π 2 n 为 正 偶 数 \left\{\begin{matrix} \int_0^{2\pi}\sin^nxdx \\ \int_0^{2\pi}\cos^nxdx \end{matrix}\right.= \left\{\begin{matrix} 0 & n为正奇数 \\ 4\cdot\frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{1}{2}\cdot\frac{\pi}{2} & n为正偶数 \end{matrix}\right. {02πsinnxdx02πcosnxdx={04nn1n2n3212πnn

6. 区间简化公式

∫ a b f ( x ) d x = ∫ 0 1 ( b − a ) f [ a + ( b − a ) t ] d t \int_a^bf(x)dx=\int_0^1(b-a)f\left[a+(b-a)t\right]dt abf(x)dx=01(ba)f[a+(ba)t]dt
∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x ( a > 0 ) \int_{-a}^af(x)dx=\int_0^a\left[f(x)+f(-x)\right]dx(a>0) aaf(x)dx=0a[f(x)+f(x)]dx(a>0)

7. 应用

① 面积:

S = ∫ a b ∣ y 1 ( x ) − y 2 ( x ) ∣ d x S=\int_a^b|y_1(x)-y_2(x)|dx S=aby1(x)y2(x)dx
S = 1 2 ∫ α β ∣ r 1 2 ( θ ) − r 2 2 θ ∣ d θ S=\frac{1}{2}\int_\alpha^\beta|r_1^2(\theta)-r_2^2{\theta}|d\theta S=21αβr12(θ)r22θdθ
S = ∫ a b y ( t ) d x ( t ) = ∫ α β ∣ y ( t ) ⋅ x ′ ( t ) ∣ d t S=\int_a^by(t)dx(t)=\int_\alpha^\beta|y(t)\cdot x'(t)|dt S=aby(t)dx(t)=αβy(t)x(t)dt
椭 圆 面 积 公 式 : S = π a b 椭圆面积公式:S=\pi ab S=πab

② 体积

绕 x 轴 : V = ∫ a b π y 2 ( x ) d x 绕x轴:V=\int_a^b\pi y^2(x)dx xV=abπy2(x)dx
绕 y 轴 : V = 2 π ∫ a b x ∣ y ( x ) ∣ d x 绕y轴:V=2\pi\int_a^bx|y(x)|dx yV=2πabxy(x)dx

③ 均值

y ˉ = 1 b − a ∫ a b y ( x ) d x , 注 : 平 均 值 是 积 分 中 值 定 理 中 的 ξ \bar{y}=\frac{1}{b-a}\int_a^by(x)dx,注:平均值是积分中值定理中的\xi yˉ=ba1aby(x)dxξ

④弧长

s = ∫ a b 1 + [ y ′ ( x ) ] 2 d x s=\int_a^b\sqrt{1+[y'(x)]^2}dx s=ab1+[y(x)]2 dx
s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t s=\int_\alpha^\beta\sqrt{[x'(t)]^2+[y'(t)]^2}dt s=αβ[x(t)]2+[y(t)]2 dt
s = ∫ α β [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ s=\int_\alpha^\beta\sqrt{[r(\theta)]^2+[r'(\theta)]^2}d\theta s=αβ[r(θ)]2+[r(θ)]2 dθ

⑤表面积

y ( x ) 绕 x 轴 : S = 2 π ∫ a b ∣ y ( x ) ∣ 1 + [ y ′ ( x ) ] 2 d x y(x)绕x轴:S=2\pi\int_a^b|y(x)|\sqrt{1+[y'(x)]^2}dx y(x)xS=2πaby(x)1+[y(x)]2 dx
y ( t ) 绕 x 轴 : S = 2 π ∫ a b ∣ y ( t ) ∣ [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d x y(t)绕x轴:S=2\pi\int_a^b|y(t)|\sqrt{[x'(t)]^2+[y'(t)]^2}dx y(t)xS=2πaby(t)[x(t)]2+[y(t)]2 dx

⑥形心

x ˉ = ∬ D x d σ ∬ D d σ = ∫ a b d x ∫ 0 f ( x ) x d y ∫ a b d x ∫ 0 f ( x ) d y = ∫ a b x f ( x ) d x ∫ a b f ( x ) d x \bar{x}=\frac{\iint\limits_{D}xd\sigma}{\iint\limits_{D}d\sigma}=\frac{\int_a^bdx\int_0^{f(x)}xdy}{\int_a^bdx\int_0^{f(x)}dy}=\frac{\int_a^bxf(x)dx}{\int_a^bf(x)dx} xˉ=DdσDxdσ=abdx0f(x)dyabdx0f(x)xdy=abf(x)dxabxf(x)dx
y ˉ = ∬ D y d σ ∬ D d σ = ∫ a b d x ∫ 0 f ( x ) y d y ∫ a b d x ∫ 0 f ( x ) d y = 1 2 ∫ a b f 2 ( x ) d x ∫ a b f ( x ) d x \bar{y}=\frac{\iint\limits_{D}yd\sigma}{\iint\limits_{D}d\sigma}=\frac{\int_a^bdx\int_0^{f(x)}ydy}{\int_a^bdx\int_0^{f(x)}dy}=\frac{\frac{1}{2}\int_a^bf^2(x)dx}{\int_a^bf(x)dx} yˉ=DdσDydσ=abdx0f(x)dyabdx0f(x)ydy=abf(x)dx21abf2(x)dx

⑦平行截面面积

V = ∫ b a S ( x ) d x V=\int_b^aS(x)dx V=baS(x)dx

十一、中值定理

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,则:

1. 有界与最值定理

m ≤ f ( x ) ≤ M m\le f(x)\le M mf(x)M ,其中 m , M m,M m,M 分别为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的最小值与最大值。

2. 介值定理

m ≤ μ ≤ M m\le \mu\le M mμM 时,存在 ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b] ,使得 f ( ξ ) = μ f(\xi)=\mu f(ξ)=μ

3. 平均值定理

a < x 1 < x 2 < ⋯ < x n < b a<x_1<x_2<\cdots<x_n<b a<x1<x2<<xn<b 时,在 [ x 1 , x n ] [x_1,x_n] [x1,xn] 内至少存在一点 ξ \xi ξ ,使: f ( ξ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n f(\xi)=\frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n} f(ξ)=nf(x1)+f(x2)++f(xn)

4. 零点定理

f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)f(b)<0 时,存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) ,使得 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0

5. 费马定理

f ( x ) f(x) f(x) x 0 x_0 x0 点处满足 ① 可导,② 取极值,则 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

6. 罗尔定理

f ( x ) f(x) f(x) 满足 ① [ a , b ] [a,b] [a,b] 上连续,② [ a , b ] [a,b] [a,b] 内可导,③ f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) ,则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b) ,使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

7. 拉格朗日中值定理

f ( x ) f(x) f(x) 满足 ① [ a , b ] [a,b] [a,b] 上连续,② ( a , b ) (a,b) (a,b) 内可导,则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b) ,使得: f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba) 或者写成: f ′ ( ξ ) = f ( b ) − f ( a ) b − a f'(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)

8. 柯西中值定理

f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 满足 ① [ a , b ] [a,b] [a,b] 上连续,② ( a , b ) (a,b) (a,b) 内可导,③ g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0 ,则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b) ,使得: f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

9. 泰勒公式

1)带拉格朗日余项的 n 阶泰勒公式:

f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某个邻域内 n + 1 n+1 n+1 阶导数存在,则对该邻域内的任一点 x x x ,有: f ( x ) = f ( x n ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x)=f(x_n)+f'(x_0)(x-x_0)+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(xn)+f(x0)(xx0)++n!1f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1 其中 ξ \xi ξ 介于 x , x 0 x,x_0 x,x0 之间。

2)带佩亚诺余项的 n 阶泰勒公式:

f ( x ) f(x) f(x) 在点 x 0 x_0 x0 n n n 阶可导,则存在 x 0 x_0 x0 的一个邻域,对于该邻域中的任一点 x x x ,有: f ( x ) = f ( x n ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x)=f(x_n)+f'(x_0)(x-x_0)+\frac{1}{2!}f^{''}(x_0)(x-x_0)^2+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+o((x-x_0)^n) f(x)=f(xn)+f(x0)(xx0)+2!1f(x0)(xx0)2++n!1f(n)(x0)(xx0)n+o((xx0)n)

10. 积分中值定理

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,则存在 ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b] ,使得: ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_{a}^{b}f(x)dx=f(\xi)(b-a) abf(x)dx=f(ξ)(ba)

11. 二重积分中值定理

f ( x , y ) f(x,y) f(x,y) D D D 上连续,则存在 μ , ξ ∈ D \mu,\xi\in D μ,ξD ,使得: ∬ D f ( x , y ) d σ = f ( μ , ξ ) ⋅ σ \iint\limits_{D}^{}f(x,y)d\sigma=f(\mu,\xi)\cdot\sigma Df(x,y)dσ=f(μ,ξ)σ

十二、函数图像

1. 心形线

r = a ( 1 − c o s θ ) ( a > 0 ) r=a(1-cosθ)(a>0) r=a(1cosθ)(a>0)
心形线
r = a ( 1 + c o s θ ) ( a > 0 ) r=a(1+cosθ)(a>0) r=a(1+cosθ)(a>0)
心形线

2. 玫瑰线

r = a s i n 3 θ ( a > 0 ) r=asin3θ(a>0) r=asin3θ(a>0)
玫瑰线

3. 阿基米德螺线

r = a θ ( a > 0 , θ > = 0 ) r=aθ(a>0,θ>=0) r=aθ(a>0,θ>=0)
阿基米德螺线

4. 伯努利双扭线

r ² = 2 a ² c o s 2 θ r²=2a²cos2θ r²=2a²cos2θ
r ² = a ² c o s 2 θ r²=a²cos2θ r²=a²cos2θ
伯努利双扭线
r ² = a ² s i n 2 θ r²=a²sin2θ r²=a²sin2θ
伯努利双扭线

5. 摆线

{ x = r ( t − s i n t ) y = r ( 1 − c o s t ) \left\{\begin{matrix} x=r(t-sint) \\ y=r(1-cost) \end{matrix}\right. {x=r(tsint)y=r(1cost)
摆线

6. 星形线

x ⅔ + y ⅔ = r ⅔ x⅔+y⅔=r⅔ x+y=r
{ x = r c o s ³ t y = r s i n ³ t \left\{\begin{matrix} x=rcos³t \\ y=rsin³t \end{matrix}\right. {x=rcos³ty=rsin³t
星形线

十三、微分方程

1. 齐次线性微分方程的通解

  1. p 2 − 4 q > 0 p^2-4q>0 p24q>0,则 λ 1 ≠ λ 2 \lambda_1\ne\lambda_2 λ1=λ2是特征方程的两个不等实根,则通解为:
    y = C 1 e λ 1 x + C 2 e λ 2 x y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x} y=C1eλ1x+C2eλ2x
  2. p 2 − 4 q = 0 p^2-4q=0 p24q=0,则 λ 1 = λ 2 \lambda_1=\lambda_2 λ1=λ2是特征方程的两个相等实根,则通解为:
    y = ( C 1 + C 2 x ) e λ x y=\left(C_1+C_2x\right)e^{\lambda x} y=(C1+C2x)eλx
  3. p 2 − 4 q < 0 p^2-4q<0 p24q<0,设 α ± β i \alpha\pm\beta i α±βi是特征方程的一堆共轭复根,则通解为:
    y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{\alpha x}\left(C_1\cos{\beta x}+C_2\sin{\beta x}\right) y=eαx(C1cosβx+C2sinβx)

2. 非齐次线性微分方程的特解

  1. 当自由项 f ( x ) = P n ( x ) e α x f(x)=P_n(x)e^{\alpha x} f(x)=Pn(x)eαx时,特解要设为:
    y ∗ = e α x Q n ( x ) x k y^*=e^{\alpha x}Q_n(x)x^k y=eαxQn(x)xk其中:
    { e α x 照 抄 Q n ( x ) 为 x 的 n 次 一 般 多 项 式 k = { 0 , α ≠ λ 1 , α ≠ λ 2 1 , α = λ 1 或 α = λ 2 2 , α = λ 1 = λ 2 \left\{\begin{matrix} e^{\alpha x}照抄 \\ Q_n(x)为x的n次一般多项式 \\ k=\left\{\begin{matrix} 0,&\alpha\ne\lambda_1,\alpha\ne\lambda_2 \\ 1,&\alpha=\lambda_1或\alpha=\lambda_2 \\ 2,&\alpha=\lambda_1=\lambda_2 \end{matrix}\right. \end{matrix}\right. eαxQn(x)xnk=0,1,2,α=λ1,α=λ2α=λ1α=λ2α=λ1=λ2
  2. 当自由项 f ( x ) = e α x [ P m ( x ) cos ⁡ β x + P n ( x ) sin ⁡ β x ] f(x)=e^{\alpha x}\left[P_m(x)\cos{\beta x}+P_n(x)\sin{\beta x}\right] f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx]时,特解要设为:
    y ∗ = e α x [ Q l ( 1 ) ( x ) cos ⁡ β x + Q l ( 2 ) ( x ) sin ⁡ β x ] x k y^*=e^{\alpha x}\left[Q_l^{(1)}(x)\cos{\beta x}+Q_l^{(2)}(x)\sin{\beta x}\right]x^k y=eαx[Ql(1)(x)cosβx+Ql(2)(x)sinβx]xk
    其中:
    { e α x 照 抄 l = max ⁡ ( m , n ) , Q l ( 1 ) ( x ) , Q l ( 2 ) ( x ) 分 别 为 x 的 两 个 不 同 的 l 次 一 般 多 项 式 k = { 0 , α ± β i 不 是 特 征 根 1 , α ± β i 是 特 征 根 \left\{\begin{matrix} e^{\alpha x}照抄 \\ l=\max(m,n),Q_l^{(1)}(x),Q_l^{(2)}(x)分别为x的两个不同的l次一般多项式 \\ k=\left\{\begin{matrix} 0, & \alpha\pm\beta i不是特征根 \\ 1, & \alpha\pm\beta i是特征根 \end{matrix}\right. \\ \end{matrix}\right. eαxl=max(m,n),Ql(1)(x),Ql(2)(x)xlk={0,1,α±βiα±βi
  • 11
    点赞
  • 70
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BeZer0

打赏一杯奶茶支持一下作者吧~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值