考研数学常用基础知识默写版

目录:点我

答案: 点我

一、数列

1. 等差数列

a n = a_n= an=
S n = S_n= Sn=

2.等比数列

a n = a_n= an=
S n = S_n= Sn=

3. 前n项和

1 + 2 + ⋯ + n = 1+2+\dots+n= 1+2++n=
1 2 + 2 2 + ⋯ + n 2 = 1^2+2^2+\dots+n^2= 12+22++n2=
1 1 × 2 + 1 2 × 3 + ⋯ + 1 n × ( n + 1 ) = \frac{1}{1\times2}+\frac{1}{2\times3}+\dots+\frac{1}{n\times(n+1)}= 1×21+2×31++n×(n+1)1=

二、三角函数

1. 基本关系

1 + tan ⁡ 2 α = 1+\tan^2\alpha= 1+tan2α=
1 + cot ⁡ 2 α = 1+\cot^2\alpha= 1+cot2α=
a sin ⁡ x + b sin ⁡ x = a\sin x+b\sin x= asinx+bsinx=

2. 诱导公式

π 2 − α \frac{\pi}{2}-\alpha 2πα π 2 + α \frac{\pi}{2}+\alpha 2π+α π − α \pi-\alpha πα π + α \pi+\alpha π+α 3 π 2 − α \frac{3\pi}{2}-\alpha 23πα 3 π 2 + α \frac{3\pi}{2}+\alpha 23π+α 2 π − α 2\pi-\alpha 2πα
sin ⁡ θ \sin\theta sinθ
cos ⁡ θ \cos\theta cosθ
tan ⁡ θ \tan\theta tanθ
cot ⁡ θ \cot\theta cotθ

3. 倍角公式

sin ⁡ 3 α = \sin3\alpha= sin3α=
cos ⁡ 3 α = \cos3\alpha= cos3α=
tan ⁡ 2 α = \tan2\alpha= tan2α=
cot ⁡ 2 α = \cot2\alpha= cot2α=

4. 半角公式

tan ⁡ α 2 = \tan\frac{\alpha}{2}= tan2α=
cot ⁡ α 2 = \cot\frac{\alpha}{2}= cot2α=

5. 和差公式

sin ⁡ ( α ± β ) = \sin(\alpha\pm\beta)= sin(α±β)=
cos ⁡ ( α ± β ) = \cos(\alpha\pm\beta)= cos(α±β)=
tan ⁡ ( α ± β ) = \tan(\alpha\pm\beta)= tan(α±β)=
cot ⁡ ( α ± β ) = \cot(\alpha\pm\beta)= cot(α±β)=

6. 积化和差

sin ⁡ α cos ⁡ β = \sin\alpha\cos\beta= sinαcosβ=
cos ⁡ α sin ⁡ β = \cos\alpha\sin\beta= cosαsinβ=
cos ⁡ α cos ⁡ β = \cos\alpha\cos\beta= cosαcosβ=
sin ⁡ α sin ⁡ β = \sin\alpha\sin\beta= sinαsinβ=

7. 和差化积

sin ⁡ α + sin ⁡ β = \sin\alpha+\sin\beta= sinα+sinβ=
sin ⁡ α − sin ⁡ β = \sin\alpha-\sin\beta= sinαsinβ=
cos ⁡ α + cos ⁡ β = \cos\alpha+\cos\beta= cosα+cosβ=
cos ⁡ α − cos ⁡ β = \cos\alpha-\cos\beta= cosαcosβ=

8. 万能公式

当 μ = tan ⁡ x 2 ( − π < x < π ) , 则 sin ⁡ x = 当\mu=\tan\frac{x}{2}(-\pi<x<\pi),则\sin x= μ=tan2x(π<x<π)sinx=

三、一元二次方程

1. 韦达定理

x 1 + x 2 = x_1+x_2= x1+x2=
x 1 x 2 = x_1x_2= x1x2=

2. 抛物线顶点

设 y = a x 2 + b x + c , 则 顶 点 : p (   ,   ) 设y=ax^2+bx+c,则顶点:p(~,~) y=ax2+bx+cp( , )

3. 点到直线距离

l = l= l=

四、因式分解

( a + b ) 3 = (a+b)^3= (a+b)3=
a 3 − b 3 = a^3-b^3= a3b3=
a 3 + b 3 = a^3+b^3= a3+b3=
n 为 正 整 数 : a n − b n = n为正整数:a^n-b^n= nanbn=
n 为 正 偶 数 : a n − b n = n为正偶数:a^n-b^n= nanbn=
n 为 正 奇 数 : a n + b n = n为正奇数:a^n+b^n= nan+bn=
二 项 式 定 理 : ( a + b ) n = 二项式定理:(a+b)^n= (a+b)n=

五、阶乘

( 2 n ) ! ! = 2 ⋅ 4 ⋅ 6 … ( 2 n ) = (2n)!!=2\cdot4\cdot6\dots(2n)= (2n)!!=246(2n)=
( 2 n − 1 ) ! ! = (2n-1)!!= (2n1)!!=

六、不等式

1. 基础

∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a\pm b|\le|a|+|b| a±ba+b
∣ ∣ a ∣ + ∣ b ∣ ∣ ≤ ∣ a − b ∣ ||a|+|b||\le|a-b| a+bab
∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int_a^bf(x)dx|\le\int_a^b|f(x)|dx abf(x)dxabf(x)dx

2. 基础

a b ≤ a + b 2 ≤ a 2 + b 2 2 ( a , b > 0 ) \sqrt{ab}\le\frac{a+b}{2}\le\sqrt{\frac{a^2+b^2}{2}}(a,b>0) ab 2a+b2a2+b2 (a,b>0)

3. 重要

设 a > b > 0 , 则 { a n > b n , n > 0 a n < b n , n < 0 设a>b>0,则 \left\{\begin{matrix} a^n>b^n, & n>0 \\ a^n<b^n, & n<0 \end{matrix}\right. a>b>0{an>bn,an<bn,n>0n<0

4. 低频

若 0 < a < x < b , 0 < c < y < d , 则 c b < y x < d a 若0<a<x<b,0<c<y<d,则\frac{c}{b}<\frac{y}{x}<\frac{d}{a} 0<a<x<b0<c<y<dbc<xy<ad

5. 重要

sin ⁡ x < x < tan ⁡ x ( 0 < x < π 2 ) \sin x<x<\tan x(0<x<\frac{\pi}{2}) sinx<x<tanx(0<x<2π)

6. 重要

sin ⁡ x < x ( x > 0 ) \sin x<x(x>0) sinx<x(x>0)

7. 低频

arcsin ⁡ x ≤ x ≤ arcsin ⁡ x ( 0 ≤ x ≤ 1 ) \arcsin x\le x\le\arcsin x(0\le x\le1) arcsinxxarcsinx(0x1)

8. 重要

e x ≥ x + 1 e^x\ge x+1 exx+1

9. 重要

x − 1 ≥ ln ⁡ x ( x > 0 ) x-1\ge\ln x(x>0) x1lnx(x>0)

10. 低频

1 1 + x < ln ⁡ ( 1 + 1 x ) < 1 x ( x > 0 ) \frac{1}{1+x}<\ln(1+\frac{1}{x})<\frac{1}{x}(x>0) 1+x1<ln(1+x1)<x1(x>0)

七、泰勒公式

sin ⁡ x = \sin x= sinx=
cos ⁡ x = \cos x= cosx=
arcsin ⁡ x = \arcsin x= arcsinx=
tan ⁡ x = \tan x= tanx=
arctan ⁡ x = \arctan x= arctanx=
ln ⁡ ( 1 + x ) = \ln(1+x)= ln(1+x)=
e x = e^x= ex=
( 1 + x ) α = (1+x)^\alpha= (1+x)α=
1 1 − x = \frac{1}{1-x}= 1x1=
1 + x 2 = \sqrt{1+x^2}= 1+x2 =
y = f ( x ) = y=f(x)= y=f(x)=

八、等价无穷小

1. 基础

sin ⁡ x ∼ 、 tan ⁡ x ∼ 、 arcsin ⁡ x ∼ 、 arcsin ⁡ x ∼ 、 ln ⁡ ( 1 + x ) ∼ 、 e x − 1 ∼ \sin x\sim 、\tan x\sim 、\arcsin x\sim 、\arcsin x\sim 、\ln(1+x)\sim 、e^x-1\sim sinxtanxarcsinxarcsinxln(1+x)ex1

2. 重要

a x − 1 ∼ 、 1 − cos ⁡ x ∼ 、 ( 1 + x ) α − 1 ∼ 、 1 − cos ⁡ α x ∼ a^x-1\sim 、1-\cos x\sim、(1+x)^\alpha-1\sim、1-\cos^\alpha x\sim ax11cosx(1+x)α11cosαx

3. 两个重要极限

lim ⁡ x ⟶ ∞ sin ⁡ x x = \lim_{x\longrightarrow\infty}\frac{\sin x}{x}= xlimxsinx=
lim ⁡ x ⟶ ∞ ( 1 + 1 x ) x = \lim_{x\longrightarrow\infty}(1+\frac{1}{x})^x= xlim(1+x1)x=

九、导数公式

1. 基本求导公式

( log ⁡ α x ) ′ = (\log_\alpha x)'= (logαx)=
( arcsin ⁡ x ) ′ = (\arcsin x)'= (arcsinx)=
( tan ⁡ x ) ′ = (\tan x)'= (tanx)=
( arccos ⁡ x ) ′ = (\arccos x)'= (arccosx)=
( cot ⁡ x ) ′ = (\cot x)'= (cotx)=
( arctan ⁡ x ) ′ = (\arctan x)'= (arctanx)=
( a r c c o t x ) ′ = (arccotx)'= (arccotx)=
( sec ⁡ x ) ′ = (\sec x)'= (secx)=
( csc ⁡ x ) ′ = (\csc x)'= (cscx)=
[ ln ⁡ ( x + x 2 + 1 ) ] ′ = \left[\ln\left(x+\sqrt{x^2+1}\right)\right]'= [ln(x+x2+1 )]=
[ ln ⁡ ( x + x 2 − 1 ) ] ′ = \left[\ln\left(x+\sqrt{x^2-1}\right)\right]'= [ln(x+x21 )]=

2. 参数方程

d y d x = \frac{dy}{dx}= dxdy=
d 2 y d x 2 = \frac{d^2y}{dx^2}= dx2d2y=

3. 反函数

y x ′ = d y d x = y'_x=\frac{dy}{dx}= yx=dxdy=
y x x ′ ′ = d 2 y d x 2 = y''_{xx}=\frac{d^2y}{dx^2}= yxx=dx2d2y=

4. 变限积分求导公式

F ( x ) = ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t F(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}f(t)dt F(x)=φ1(x)φ2(x)f(t)dt
F ′ ( x ) = F'(x)= F(x)=

5. 莱布尼茨公式

( u v ) ( n ) = (uv)^{(n)}= (uv)(n)=

6. 曲率

k = k= k=
r = r= r=
圆 心 坐 标 : 圆心坐标:

十、积分公式

1. 不定积分

∫ 1 x d x = \int\frac{1}{x}dx= x1dx=
∫ a x d x = \int a^xdx= axdx=
∫ tan ⁡ x d x = \int\tan xdx= tanxdx=
∫ cot ⁡ x d x = \int\cot xdx= cotxdx=
∫ 1 cos ⁡ x d x = \int\frac{1}{\cos x}dx= cosx1dx=
∫ 1 sin ⁡ x d x = \int\frac{1}{\sin x}dx= sinx1dx=
∫ sec ⁡ 2 x d x = \int\sec^2xdx= sec2xdx=
∫ csc ⁡ 2 x d x = \int\csc^2xdx= csc2xdx=
∫ sec ⁡ x tan ⁡ x d x = \int\sec x\tan xdx= secxtanxdx=
∫ csc ⁡ x cot ⁡ x d x = \int\csc x\cot xdx= cscxcotxdx=
∫ 1 1 + x 2 d x = \int\frac{1}{1+x^2}dx= 1+x21dx=
∫ 1 a 2 + x 2 d x = \int\frac{1}{a^2+x^2}dx= a2+x21dx=
∫ 1 1 − x 2 d x = \int\frac{1}{\sqrt{1-x^2}}dx= 1x2 1dx=
∫ 1 a 2 − x 2 d x = \int\frac{1}{\sqrt{a^2-x^2}}dx= a2x2 1dx=
∫ 1 x 2 + a 2 d x = \int\frac{1}{\sqrt{x^2+a^2}}dx= x2+a2 1dx=
∫ 1 x 2 − a 2 d x = \int\frac{1}{\sqrt{x^2-a^2}}dx= x2a2 1dx=
∫ 1 x 2 − a 2 d x = \int\frac{1}{x^2-a^2}dx= x2a21dx=
∫ 1 a 2 − x 2 d x = \int\frac{1}{a^2-x^2}dx= a2x21dx=
∫ a 2 − x 2 d x = \int\sqrt{a^2-x^2}dx= a2x2 dx=
∫ sin ⁡ 2 x d x = \int\sin^2xdx= sin2xdx=
∫ cos ⁡ 2 x d x = \int\cos^2xdx= cos2xdx=
∫ tan ⁡ 2 x d x = \int\tan^2xdx= tan2xdx=
∫ cot ⁡ 2 x d x = \int\cot^2xdx= cot2xdx=

2. 定积分

偶 函 数 : ∫ − a a f ( x ) d x = 偶函数:\int_{-a}^{a}f(x)dx= aaf(x)dx=
奇 函 数 : ∫ − a a = 奇函数:\int_{-a}^a= aa=
∫ 0 π x f ( sin ⁡ x ) d x = π 2 ? = π ? \int_0^\pi xf(\sin x)dx=\frac{\pi}{2}?=\pi? 0πxf(sinx)dx=2π?=π?
∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 ? d x \int_0^\frac{\pi}{2}f(\sin x)dx=\int_0^\frac{\pi}{2}?dx 02πf(sinx)dx=02π?dx
∫ 0 π 2 f ( sin ⁡ x , cos ⁡ x ) d x = ∫ 0 π 2 ? d x \int_0^\frac{\pi}{2}f(\sin x,\cos x)dx=\int_0^\frac{\pi}{2}?dx 02πf(sinx,cosx)dx=02π?dx
∫ a b f ( x ) d x = ∫ − π 2 π 2 ? d t \int_a^bf(x)dx=\int_{-\frac{\pi}{2}}^\frac{\pi}{2}?dt abf(x)dx=2π2π?dt

3. 分部积分法

∫ u d v = \int udv= udv=
∫ u v ( n + 1 ) d x = \int uv^{(n+1)}dx= uv(n+1)dx=

4. 区间再现

∫ a b f ( x ) d x = \int_a^bf(x)dx= abf(x)dx=
∫ a b f ( x ) d x = 1 2 ∫ a b ? d x \int_a^bf(x)dx=\frac{1}{2}\int_a^b?dx abf(x)dx=21ab?dx
∫ a b f ( x ) d x = ∫ a a + b 2 ? d x \int_a^bf(x)dx=\int_a^\frac{a+b}{2}?dx abf(x)dx=a2a+b?dx

5. 华里士公式

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { ? n 为 大 于 1 的 奇 数 ? n 为 正 偶 数 \int_0^\frac{\pi}{2}\sin^nxdx=\int_0^\frac{\pi}{2}\cos^nxdx= \left\{\begin{matrix} ? & n为大于1的奇数 \\ ? & n为正偶数 \end{matrix}\right. 02πsinnxdx=02πcosnxdx={??n1n
∫ 0 π sin ⁡ n x d x = { ? n 为 大 于 1 的 奇 数 ? n 为 正 偶 数 \int_0^\pi\sin^nxdx= \left\{\begin{matrix} ? & n为大于1的奇数 \\ ? & n为正偶数 \end{matrix}\right. 0πsinnxdx={??n1n
∫ 0 π cos ⁡ n x d x = { ? n 为 正 奇 数 ? n 为 正 偶 数 \int_0^\pi\cos^nxdx= \left\{\begin{matrix} ? & n为正奇数 \\ ? & n为正偶数 \end{matrix}\right. 0πcosnxdx={??nn
{ ∫ 0 2 π sin ⁡ n x d x ∫ 0 2 π cos ⁡ n x d x = { ? n 为 正 奇 数 ? n 为 正 偶 数 \left\{\begin{matrix} \int_0^{2\pi}\sin^nxdx \\ \int_0^{2\pi}\cos^nxdx \end{matrix}\right.= \left\{\begin{matrix} ? & n为正奇数 \\ ? & n为正偶数 \end{matrix}\right. {02πsinnxdx02πcosnxdx={??nn

6. 区间简化公式

∫ a b f ( x ) d x = ∫ 0 1 ? d t \int_a^bf(x)dx=\int_0^1?dt abf(x)dx=01?dt
∫ − a a f ( x ) d x = ∫ 0 a ? d x ( a > 0 ) \int_{-a}^af(x)dx=\int_0^a?dx(a>0) aaf(x)dx=0a?dx(a>0)

7. 应用

① 面积:

S = ∫ a b ∣ y 1 ( x ) − y 2 ( x ) ∣ d x S=\int_a^b|y_1(x)-y_2(x)|dx S=aby1(x)y2(x)dx
S = 1 2 ∫ α β ∣ r 1 2 ( θ ) − r 2 2 θ ∣ d θ S=\frac{1}{2}\int_\alpha^\beta|r_1^2(\theta)-r_2^2{\theta}|d\theta S=21αβr12(θ)r22θdθ
S = ∫ a b y ( t ) d x ( t ) = ∫ α β ∣ y ( t ) ⋅ x ′ ( t ) ∣ d t S=\int_a^by(t)dx(t)=\int_\alpha^\beta|y(t)\cdot x'(t)|dt S=aby(t)dx(t)=αβy(t)x(t)dt
椭 圆 面 积 公 式 : S = 椭圆面积公式:S= S=

② 体积

绕 x 轴 : V = 绕x轴:V= xV=
绕 y 轴 : V = 绕y轴:V= yV=

③ 均值

y ˉ = \bar{y}= yˉ=
注 : 平 均 值 是 积 分 中 值 定 理 中 的 ξ 注:平均值是积分中值定理中的\xi ξ

④弧长

直 角 坐 标 系 : s = 直角坐标系:s= s=
参 数 方 程 : s = 参数方程:s= s=
极 坐 标 系 : s = 极坐标系:s= s=

⑤表面积

y ( x ) 绕 x 轴 : S = y(x)绕x轴:S= y(x)xS=
y ( t ) 绕 x 轴 : S = y(t)绕x轴:S= y(t)xS=

⑥形心

x ˉ = \bar{x}= xˉ=
y ˉ = \bar{y}= yˉ=

⑦平行截面面积

V = V= V=

十一、中值定理

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,则:

1. 有界与最值定理:

2. 介值定理:

3. 平均值定理:

4. 零点定理:

5. 费马定理:

6. 罗尔定理:

7. 拉格朗日中值定理:

8. 柯西中值定理:

9. 泰勒公式:

1)带拉格朗日余项的 n 阶泰勒公式:

2)带佩亚诺余项的 n 阶泰勒公式:

10. 积分中值定理:

11. 二重积分中值定理:

十二、函数图像

1. 心形线

右 屁 股 : r = 右屁股:r= r=
左 屁 股 : r = 左屁股:r= r=

2. 玫瑰线

r = r= r=

3. 阿基米德螺线

r = r= r=

4. 伯努利双扭线

水 平 : r ² = 水平:r²= r²=
倾 斜 : r ² = 倾斜:r²= r²=

5. 摆线

{ x = y = \left\{\begin{matrix} x= \\ y= \end{matrix}\right. {x=y=

6. 星形线

直 角 坐 标 系 : 直角坐标系:
{ x = y = \left\{\begin{matrix} x= \\ y= \end{matrix}\right. {x=y=

十三、微分方程

1. 齐次线性微分方程的通解

  1. p 2 − 4 q > 0 p^2-4q>0 p24q>0,则 λ 1 ≠ λ 2 \lambda_1\ne\lambda_2 λ1=λ2是特征方程的两个不等实根,则通解为:
    y = y= y=
  2. p 2 − 4 q = 0 p^2-4q=0 p24q=0,则 λ 1 = λ 2 \lambda_1=\lambda_2 λ1=λ2是特征方程的两个相等实根,则通解为:
    y = y= y=
  3. p 2 − 4 q < 0 p^2-4q<0 p24q<0,设 α ± β i \alpha\pm\beta i α±βi是特征方程的一堆共轭复根,则通解为:
    y = y= y=

2. 非齐次线性微分方程的特解

  1. 当自由项 f ( x ) = P n ( x ) e α x f(x)=P_n(x)e^{\alpha x} f(x)=Pn(x)eαx时,特解要设为:
    y ∗ = y^*= y=
  2. 当自由项 f ( x ) = e α x [ P m ( x ) cos ⁡ β x + P n ( x ) sin ⁡ β x ] f(x)=e^{\alpha x}\left[P_m(x)\cos{\beta x}+P_n(x)\sin{\beta x}\right] f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx]时,特解要设为:
    y ∗ = y^*= y=
  • 4
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BeZer0

打赏一杯奶茶支持一下作者吧~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值