世界上大部分产品可以分为两个部分:
- 产品从无到有的过程为构建
- 把产品卖到客户手里的过程为销售
研发主要考虑的构建的过程,其中需求到产品落地的过程是构建的一个重要环节。
这里面有很多trade off(权衡),比如在时间/人力成本/技术能力的约束下,交付满足需求的产品。
做出产品的越满足需求,准确度越高,成本越低,越好。
作为研发,很多时候不知道需求是怎么来的,以及需求是否合理。
关注点是how,很少关注why。
很多工程师会犯的错误,是优化一个不应该存在的东西,马斯克的“五步算法”,第一步就是干掉不合理的需求。
如果研发想把自己的能力卖给市场,需要构建和销售两个大技能都掌握。对于研发来说,缺失的技能是如何找到有效需求以及如何将产品销售出去。
需求是怎么来的?需求是否合理?
应用场景和用户群体不一样,产品的需求也是不一样的。
精准定位产品需求很关键。
站在客户的角度去思考,为什么这个产品对我有吸引力,需要换位思考。
仅靠调研是很难获得准确需求的,需要根据市场反馈调整产品。
AI工具可以缩短推出产品原型的时间,花更少时间设计产品+大量时间调整迭代,可能会是一个有效的方法。
最后再说一说以上的几个技能,哪个是最容易被取代的。先说结论,有标准答案的问题容易被AI替换,没有标准答案的问题,不容易被AI替换。
AI能擅长替代可以通过功能验证获得反馈的事,比如设计了一个程序,该程序有明确的功能点,AI能通过运行程序来验证是否符合功能要求,然后不断调整程序获得最短的运行时间。
AI不能替代主观的事,比如写这封邮件的最佳方式是什么,与这个人谈判的最佳方式是什么。这类问题需要指定明确的上下文背景,比如AI是一个什么身份背景的人(某方面的专家?还是小白),你的读者是什么样的人(专家?小白?),站在什么角度(科普文章?严肃写作?)等等。这些背景需要AI使用者根据需求来指定,识别出哪些背景关键词是有效的,对AI使用者有一定的要求。
研发由于需求是确定的,AI只要能验证这个产品的功能,就能根据反馈不断调整。所以获得需求的能力和销售的能力相对于研发能力来说,是不容易被AI替代的。