手写数字识别

本文档介绍了一个使用Python实现的手写数字识别的代码示例,涉及MNIST数据集的加载和预处理。在加载数据时遇到了HTTPError 503和EOFError两个错误,分别给出了相应的解决方法。作者强调首次下载数据集可能较慢,但后续读取本地文件会快很多。代码中展示了如何将图像数据重塑回原始尺寸并显示。
摘要由CSDN通过智能技术生成

照着鱼书上面实现手写数字识别代码。

一、MNIST数据集

首先下载MNIST数据集,并且将数据输出瞧一瞧。

import sys, os
sys.path.append(os.pardir)  # 为了导入父目录中的文件而进行设定
from dataset.mnist import load_mnist
import numpy as np
from PIL import Image
'''mnist_show.py文件的当前工作目录为ch03,但是load_mnist()函数的mnist.py文件在dataset目录下。
因此,mnist_show.py文件不可以跨文件直接导入mnist.py文件。
sys.path.append(os.pardir)语句实际上是把父目录deep-learning-from-scatch加入到sys.path(Python 的搜索目录模块的路径集中),
从而可以导入deep-learning-from-scatch下的任何目录(包括dataset目录)中的任何文件。
'''

def img_show(img):
    # 实现array到image的转换
    pil_img = Image.fromarray(np.uint8(img))
    pil_img.show()
# flatten(是否将数组变成1维数组),normalize是是否将输入图像正规化0.0-1.0的值。读入mnist数据
# 第一次调用的时候由于要下载数据集,所以速度较慢;之后只需要读入保存在本地的文件即可
# (训练图像,训练标签), (测试图像,测试标签)
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True,
                                                  normalize=False)
img = x_train[0]
label = t_train[0]
print(label) # 5

print(img.shape) # (784,)
img = img.reshape(28, 28) # 把图像的形状变成原来的尺寸
print(img.shape) # (28, 28)

img_show(img)

报错1:urllib.error.HTTPError: HTTP Error 503: Service Unavailable
解决方法博客.
如果找不到IIS,解决方法如下,解决办法.
报错2:EOFError: Compressed file ended before the end-of-stream marker was reached
解决方法:参考博客.
tips:在第一次下载可能花费比较长的时间,当想要显示图片的时候,如果一次运行没有正常显示,再次运行就🆗了。
未完待续。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值