求最大公约数可以使用辗转相除法:
假设a > b > 0,那么a和b的最大公约数等于b和a%b的最大公约数,然后把b和a%b作为新一轮的输入。
由于这个过程会一直递减,直到a%b等于0的时候,b的值就是所要求的最大公约数。
比如:
9和6的最大公约数等于6和9%6=3的最大公约数。
由于6%3==0,所以最大公约数为3。
求最小公倍数用a*b等于l,l 除以a b的最大公约数就得a b的最小公倍数。
#include<iostream>
#include<cmath>
int a=1000000000,b=1000000000;
using namespace std;
int main()
{
int a,b,t,l;
cin>>a>>b;
//l=a*b; 求最小公倍数
while(a%b!=0)
{
if(a<b)
{
t=a;
a=b;
b=t;
}
a=a%b;
}
//b=l/b; 求最小公倍数
cout<<b;
return 0;
}