求最大公约数与求最小公倍数问题

本文介绍了使用辗转相除法计算两个整数的最大公约数(GCD)的方法,并展示了如何利用最大公约数来求解最小公倍数(LCM)。通过递归地应用a和b的最大公约数等于b和a%b的最大公约数这一性质,直至a%b等于0,此时b即为最大公约数。同时,文章提供了C++代码示例,演示了整个计算过程。
摘要由CSDN通过智能技术生成

求最大公约数可以使用辗转相除法:
假设a > b > 0,那么a和b的最大公约数等于b和a%b的最大公约数,然后把b和a%b作为新一轮的输入。
由于这个过程会一直递减,直到a%b等于0的时候,b的值就是所要求的最大公约数。
比如:
9和6的最大公约数等于6和9%6=3的最大公约数。
由于6%3==0,所以最大公约数为3。

求最小公倍数用a*b等于l,l   除以a  b的最大公约数就得a b的最小公倍数。

#include<iostream>
#include<cmath>
int a=1000000000,b=1000000000;
using namespace std;
int main()
{
    int a,b,t,l;
	cin>>a>>b;
	//l=a*b;              求最小公倍数
	while(a%b!=0)
	{
	  	if(a<b)
	  	{
	  	   	t=a;
	  	   	a=b;
	  	   	b=t;
		}
		a=a%b;	
	}
	//b=l/b;                求最小公倍数
	cout<<b;
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值