蓝桥杯 试题 算法训练 最大最小公倍数

求最大最小公倍数
本文探讨了在1到N范围内选取三个数,使它们的最小公倍数达到最大值的问题。通过分析发现,选择N、N-1、N-2(当N为奇数时)或N、N-1、N-3/N-2(当N为偶数且考虑是否为3的倍数)可以获得最大最小公倍数。

问题描述

已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。

输入格式

输入一个正整数N。

输出格式

输出一个整数,表示你找到的最小公倍数。

样例输入

9

样例输出

504

数据规模与约定

1 <= N <= 106。

解题思路:

找规律。N内三个数最大的倍数肯定是n*(n-1)*(n-2)。但是前提是这三个数没有公约数。如果n是奇数,这三个数肯定没有公约数,因为如果有公约数,三个连续数的公约数只可能是2,n为奇数,结论成立。如果n是偶数,n和n-2就有了公约数,肯定要不能选,那么能不能选n-3,就看n是否是3的倍数,如果不是,就选(n-3)*(n-1)*n,如果是,就选(n-3)*(n-1)*(n-2)。

AC代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
using namespace std;
long long ans;
int main(){	
	long long n;
	cin>>n;
	if(n<3)//n为1,2时,选1,1,2
		ans=2;
	if(n%2)
		ans=n*(n-1)*(n-2);
	else{
		if(n%3)
			ans=(n-3)*(n-1)*n;
		else
			ans=(n-3)*(n-1)*(n-2);
	} 
	cout<<ans<<endl;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wonder-King

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值