C# emgu 计算图像的平均亮度

  private void button7_Click(object sender, EventArgs e)
        {
            Mat src = CvInvoke.Imread(ImgPath, ImreadModes.Color);
            CvInvoke.CvtColor(src, src, ColorConversion.Rgb2Gray);
            MCvScalar scalar = CvInvoke.Mean(src);
            
            //CvInvoke.cvReleaseImage(ref src);
            label1.Text= scalar.V0.ToString();
        }
Emgu CV是一个针对C#语言封装的开源计算机视觉库,它提供了一组方便使用的接口来访问OpenCV(原版是用C++编写的)。区分明暗通常涉及到图像处理中的亮度调整或二值化操作。 在Emgu CV中,你可以通过以下几个步骤来区分图像中的明暗区域: 1. **读取和预处理图像**:首先使用`Image<Bgr, byte>`类加载图像,并可能应用滤波器如高斯模糊来平滑图片,减少噪声对对比度的影响。 ```csharp var img = new Image<Bgr, byte>(path); img = img.CvtColor(ColorConversion.Bgr2Gray); // 转换为灰度图像便于处理 ``` 2. **直方图均衡化**:使用`HistogramEqualization()`函数可以增强图像的整体对比度,使得原本较暗的部分变得更亮、较亮的部分变得更暗。 ```csharp img = img.HistogramEqualization(); ``` 3. **阈值分割**:通过设置适当的阈值,将图像转换为黑白二值图像,区分出明亮部分(白色像素)和暗部(黑色像素)。 ```csharp var thresholdValue = 128; // 这里假设中间灰度作为分界线 var binarizedImg = img.Threshold(thresholdValue, 255, Emgu.CV.ColorType.Binary); ``` 4. **形态学处理**:如果需要进一步细化边缘或去除噪点,可以使用形态学运算(如膨胀、腐蚀等)。 5. **分析结果**:最后你可以使用`FindContours()`找出图像中的明亮区域(白色轮廓),并进一步处理它们。 ```csharp var contours = binarizedImg.FindContours(); foreach (var contour in contours) { // 处理每个轮廓... } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值