六校联合周赛F题

题目:

Problem Description

给定n个整数a1,a2,a3……an,且1<=ai<=n问有多少对i,j 满足i<j   且gcd(a[i],a[j])=1,2,3,……n。

Input

单组数据

第一行包含一个整数n。

接下一行有n个整数 a1,a2,a3……an

1<=ai<=n

1<=n<=105

Output

输出n行,每行包含一个整数,第k行代表gcd(a[i],a[j])=k的方案数

SampleInput

 
10 
1 1 1 1 1 1 1 1 1 1

SampleOutput

 
45 0 0 0 0 0 0 0 0 0

题目大意:

简而言之,输入n个数,输出在第k行有多少对 gcd(最大公约数)=k。

题目思路:

设F[i]表示 gcd=i的倍数的 对数

设G[i]表示gcd=i 的对数,则结果等于F[i]-G[2*i]-G[3*i]-……

b[i]表示i的倍数有多少个,F[i]=b[i]*(b[i]-1)/2

代码:(整体容斥)

  • #include<cstdio>
  • #include<cstring>
  • #include<stdlib.h>
  • #include<algorithm>
  • #include<time.h>
  • #include<vector>
  • using namespace std;
  • long long a[1000005];
  • int main(){
  •     int n,i,x,y;
  •     scanf("%d",&n);
  •  
  •     for(i=1;i<=n;i++){
  •         scanf("%d",&x);
  •         a[x]++;
  •     }
  •     register int j;
  •     for(i=1;i<=n;i++)
  •     {
  •         for(j=i+i;j<=n;j+=i)
  •         {
  •             a[i]+=a[j];
  •         }
  •         a[i]=a[i]*(a[i]-1)/2;
  •     }
  •     for(i=n;i>=1;i--)
  •     {
  •         for(j=i+i;j<=n;j+=i)
  •         {
  •             a[i]-=a[j];
  •         }
  •     }
  •     for(i=1;i<=n;i++)
  •     {
  •         printf("%lld\n",a[i]);
  •     }
  •     return 0;
  • }

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值