Floyd算法

最短路径是图论中一个很经典的问题:给定图G(V,E),求一条从起点到终点的路径,使得这条路径上经过的所有边的边权之和最小。

对任意给出的图G(V,E)和起点S、终点T,如何求从S到T的最短路径。解决最短路径问题的常用算法有Dijkstra算法、Bellman-Ford算法、SPEA算法和Floyd算法。

 

Floyd算法(读者可以将其读作“弗洛伊德算法”)用来解决全源最短路问题,即对给定的图G(V,E),求任意两点u,v之间的最短路径长度,时间复杂度是O(n^3)。由于n^3的复杂度决定了顶点数n的限制约在200以内,因此使用邻接矩阵来实现Floyd算法是非常合适且方便的。

Floyd算法基于这样一个事实:如果存在顶点k,使得以k作为中介点时顶点i和顶点j的当前最短距离缩短,则使用顶点k作为顶点i和顶点j的中介点,,即当 dis[i][k] + dis[k][j]< dis[i][j]时,令dis[i][j]= dis[i][k] + dis[k][j](其中dis[i][j]表示从顶点i到顶点j的最短距离),基于这样的事实,Floyd算法的流程如下:

枚举顶点k(k属于1~n)
	以顶点k作为中介点,枚举所有顶点对i和j(i和j均属于1~n) 
		如果dis[i][k] + dis[k][j] < dis[i][j] 
			赋值dis[i][j] = dis[i][k] + dis[k][j] 

可以看到,Floyd算法的思想很简单,由此可以写出以下代码:

#include<cstdio>
#include<algorithm>
using namespace std;

const int INF = 1000000000;
const int MAXV = 200;	//MAXV为最大顶点数
int n,m;	//n为顶点数,m为边数
int dis[MAXV][MAXV];	//dis[i][j]表示顶点i和顶点j的最短距离
 
void Floyd(){
	for(int k=0;k<n;k++){
		for(int i=0;i<n;i++){
			for(int j=0;j<n;j++){
				if(dis[i][k]!=INF && dis[k][j]!=INF && dis[i][k] + dis[k][j] < dis[i][j]){
					dis[i][j] = dis[i][k] + dis[k][j];	//找到更短的路径 
				}
			}
		}
	}
} 

int main(){
	int u,v,w;
	fill(dis[0],dis[0]+MAXV*MAXV,INF);	//dis数组初始化
	scanf("%d%d",&n,&m);	//顶点数n、边数m
	for(int i=0;i<n;i++){
		dis[i][i]=0;	//顶点i到顶点i的距离初始化为0 
	} 
	for(int i=0;i<m;i++){
		scanf("%d%d%d",&u,&v,&w);
		dis[u][v] = w;	//以有向图为例进行输入 
	} 
	Floyd();	//Floyd算法
	for(int i=0;i<n;i++){	//输出dis数组 
		for(int j=0;j<n;j++){
			printf("%d ",dis[i][j]);
		} 
		printf("\n");
	} 
	return 0; 
} 

输入:

6 8
0 1 1
0 3 4
0 4 4
1 3 2
2 5 1
3 2 2
3 4 3
4 5 3

运行结果:

对 Floyd算法来说,需要注意的是:不能将最外层的k循环放到内层(即产生i->j->k的三重循环),这会导致最后结果出错。理由是:如果当较后访问的dis[u][v]了优化之后,前面访问的dis[i][j]会因为已经被访问而无法获得进一步优化。这里i、j先于u、v进行访问。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值