多核、多线程、并发与并行

一、概念

  • 进程与线程
    进程是操作系统进行资源分配管理和调度的单元,比如我们打开QQ,运行的QQ就是一个进程。
    线程是进程的一个子集,线程是CPU进行调度和执行的单元。
    一个进程可以包含一个线程(单线程的进程),也可以包含多个线程(多线程的进程)。
  • 多核与多线程
    在单核时代,也可以实现多线程,同一时间内,各个(同一或者不同)线程争夺CPU时间片。
    在多核时代,各个进程及其线程可以在不同CPU内核上执行。多核为多线程并行执行提供了可能。
  • 并发、并行与串行
    串行:各个线程排队等待CPU的执行。
    并发:指的是不同线程同时争夺一个CPU内核的时间片,这种状态就是并发。
    在这里插入图片描述
    并行:不同线程在不同CPU内核上同时执行,彼此相互不影响。
    在这里插入图片描述

二、效率与时间

我们通常说并发能够提升执行效率,觉得并发就跟提升效率有关。
现在假设有一种情况,一个多线程的进程,在被分配在固定的CPU内核上执行,各个线程虽然在并发,但是CPU一会执行这个线程,一会儿执行那个线程,不断切换,这个跟CPU先执行完A线程的任务,再执行完B线程的任务,接着C线程的任务…并没有什么时间效率上的提升,更有甚者,CPU在不断切换线程时,也需要不断切换线程上下文,切换上下文会带来时间和资源开销,与其这样并发,还不如串行呢?
所以,这里有个理解误区,提升效率不等于缩短执行时间。
假使打开QQ,我们一边时而回复聊天,时而逛空间,如果,采用串行的方式,我们就得等聊天完成后,才能正常逛空间;而如果采用多线程的方式,CPU不断切换线程执行,宏观上我们就会觉得聊天和逛空间完全可以同时进行。这就是提升了效率。
另一点理解误区,并发能缩短总执行时间。
一个多线程的进程运行在多核CPU上,它到底是并行还是并发,这个我不知道,因为CPU调度一会儿把线程分配在这个CPU内核上,一会儿把CPU分配在那个CPU内核上,各个线程可能在同一CPU内核,也可能在不同CPU内核。当在不同的CPU内核执行时,这两个线程就是并行;当两个CPU内核同时争夺同一个CPU内核的时间片时,这两个线程就是并发。
而并行才能缩短总的执行时间。

三、多线程的进程不一定会使用多核并行处理

验证如下:
本机电脑4核8G。
如下案例,开启4个线程每个线程依次打印100万次。

package org.example.demo5;

public class ThreadTest {

    private static final int num = 1000 * 1000;

    public static void main(String[] args) throws InterruptedException {
        //因为Visual VM找到java进程需要时间,所以这里让主线程先睡一会儿,
        //等待Visual VM找到进程再开始启动各子进程打印
        Thread.sleep(50000); 

        new Thread(()->{
            for (int i = 0; i < num; i++) {
                System.out.println(i);
            }

        },"线程1").start();

        new Thread(()->{
            for (int i = 0; i < num; i++) {
                System.out.println(i);
            }

        },"线程2").start();

        new Thread(()->{
            for (int i = 0; i < num; i++) {
                System.out.println(i);
            }
        },"线程3").start();

        new Thread(()->{
            for (int i = 0; i < num; i++) {
                System.out.println(i);
            }
        },"线程4").start();

    }
}

通过使用Visual VM查看线程状态,可知各个线程是在同一个CPU上并发执行的。
图片
修改执行次数,改成2000万次

package org.example.demo5;

public class ThreadTest {

    private static final int num = 20000 * 1000;

    public static void main(String[] args) throws InterruptedException {
        Thread.sleep(50000);

        new Thread(()->{
            for (int i = 0; i < num; i++) {
                System.out.println(i);
            }

        },"线程1").start();

        new Thread(()->{
            for (int i = 0; i < num; i++) {
                System.out.println(i);
            }

        },"线程2").start();

        new Thread(()->{
            for (int i = 0; i < num; i++) {
                System.out.println(i);
            }
        },"线程3").start();

        new Thread(()->{
            for (int i = 0; i < num; i++) {
                System.out.println(i);
            }
        },"线程4").start();

    }
}

通过下图可知,4个线程同时存在并发核并行的情况。
在这里插入图片描述

根据以上案例可知:
一个多线程的进程在多核处理器上,可能是以并发的方式运行,也可能是以并发+并行的方式运行。

参考:

https://www.cnblogs.com/jiading/articles/12454398.html
https://blog.csdn.net/qq_33290787/article/details/51790605
Visual VM工具的使用
https://www.cnblogs.com/xifengxiaoma/p/9402497.html

  • 6
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数据来源:中经数据库 主要指标110多个(全部都是纯粹的 市辖区 指标),大致是: GDP GDP增速 第一产业增加值占GDP比重 第二产业增加值占GDP比重 第三产业增加值占GDP比重 人均GDP 社会消费品零售总额 固定资产投资(不含农户) 新设外商投资企业数_外商直接投资 实际利用外资金额(美元) 一般公共预算收入 一般公共预算支出 一般公共预算支出_教育 一般公共预算支出_科学技术 金融机构人民币各项存款余额_个人储蓄存款 金融机构人民币各项存款余额 金融机构人民币各项贷款余额 规模以上工业企业单位数 规模以上工业企业单位数_内资企业 规模以上工业企业单位数_港澳台商投资企业 规模以上工业企业单位数_外商投资企业 规模以上工业总产值 规模以上工业总产值_内资企业 规模以上工业总产值_港澳台商投资企业 规模以上工业总产值_外商投资企业 规模以上工业企业流动资产合计 规模以上工业企业固定资产合计 规模以上工业企业利润总额 规模以上工业企业应交增值税 规模以上工业企业主营业务税金及附加 户籍人口数 年均户籍人口数 户籍人口自然增长率 第一产业就业人员占全部城镇单位就业人员比重 第二产业就业人员占全部城镇单位就业人员比重 第三产业就业人员占全部城镇单位就业人员比重 城镇非私营单位就业人员数 城镇非私营单位就业人员数_第一产业 城镇非私营单位就业人员数_第二产业 城镇非私营单位就业人员数_第三产业 城镇非私营单位就业人员数_农、林、牧、渔业 城镇非私营单位就业人员数_采矿业 城镇非私营单位就业人员数_制造业 城镇非私营单位就业人员数_电力、热力、燃气及水生产和供应业 城镇非私营单位就业人员数_建筑业 城镇非私营单位就业人员数_批发和零售业 城镇非私营单位就业人员数_交通运输、仓储和邮政业 城镇非私营单位就业人员数_住宿和餐饮业 城镇非私营单位就业人员数_信息传输、软件和信息技术服务业 城镇非私营单位就业人员数_金融业 城镇非私营单位就业人员数_房地产业 城镇非私营单位就业人员数_租赁和商务服务业 城镇非私营单位就业人员数_科学研究和技术服务业 城镇非私营单位就业人员数_水利、环境和公共设施管理业 城镇非私营单位就业人员数_居民服务、修理和其他服务业 城镇非私营单位就业人员数_教育 城镇非私营单位就业人员数_卫生和社会工作 城镇非私营单位就业人员数_文化、体育和娱乐业 城镇非私营单位就业人员数_公共管理、社会保障和社会组织 城镇非私营单位在岗职工平均人数 城镇就业人员数_私营企业和个体 城镇非私营单位在岗职工工资总额 城镇非私营单位在岗职工平均工资 城镇登记失业人员数 建成区面积 建设用地面积 建设用地面积_居住用地 液化石油气供气总量 液化石油气供气总量_居民家庭 人工煤气、天然气供气总量 人工煤气、天然气供气总量_居民家庭 液化石油气用气人口 人工煤气、天然气用气人口 城市公共汽电车运营车辆数 城市出租汽车运营车辆数 城市公共汽电车客运总量 道路面积 排水管道长度 建成区绿化覆盖面积 建成区绿化覆盖率 绿地面积 公园绿地面积 维护建设资金支出 土地面积 生活用水供水量 供水总量 全社会用电量 城乡居民生活用电量 工业生产用电量 房地产开发投资 房地产开发投资_住宅 限额以上批发和零售业法人单位数 限额以上批发和零售业商品销售总额 普通中学学校数 中等职业教育学校数 普通小学学校数 普通高等学校专任教师数 普通中学专任教师数 中等职业教育专任教师数 普通小学专任教师数 普通高等学校在校生数 普通中学在校生数 中等职业教育在校生数 普通小学在校生数 电视节目综合人口覆盖率 公共图书馆总藏量_图书 医疗卫生机构数_医院和卫生院 卫生人员数_执业(助理)医师 医疗卫生机构床位数_医院和卫生院 城镇职工基本养老保险参保人数 职工基本医疗保险参保人数 失业保险参保人数
机器学习是一种人工智能(AI)的子领域,致力于研究如何利用数据和算法让计算机系统具备学习能力,从而能够自动地完成特定任务或者改进自身性能。机器学习的核心思想是让计算机系统通过学习数据中的模式和规律来实现目标,而不需要显式地编程。 机器学习应用非常广泛,包括但不限于以下领域: 图像识别和计算机视觉: 机器学习在图像识别、目标检测、人脸识别、图像分割等方面有着广泛的应用。例如,通过深度学习技术,可以训练神经网络来识别图像中的对象、人脸或者场景,用于智能监控、自动驾驶、医学影像分析等领域。 自然语言处理: 机器学习在自然语言处理领域有着重要的应用,包括文本分类、情感分析、机器翻译、语音识别等。例如,通过深度学习模型,可以训练神经网络来理解和生成自然语言,用于智能客服、智能助手、机器翻译等场景。 推荐系统: 推荐系统利用机器学习算法分析用户的行为和偏好,为用户推荐个性化的产品或服务。例如,电商网站可以利用机器学习算法分析用户的购买历史和浏览行为,向用户推荐感兴趣的商品。 预测和预测分析: 机器学习可以用于预测未来事件的发生概率或者趋势。例如,金融领域可以利用机器学习算法进行股票价格预测、信用评分、欺诈检测等。 医疗诊断和生物信息学: 机器学习在医疗诊断、药物研发、基因组学等领域有着重要的应用。例如,可以利用机器学习算法分析医学影像数据进行疾病诊断,或者利用机器学习算法分析基因数据进行疾病风险预测。 智能交通和物联网: 机器学习可以应用于智能交通系统、智能城市管理和物联网等领域。例如,可以利用机器学习算法分析交通数据优化交通流量,或者利用机器学习算法分析传感器数据监测设备状态。 以上仅是机器学习应用的一部分,随着机器学习技术的不断发展和应用场景的不断拓展,机器学习在各个领域都有着重要的应用价值,并且正在改变我们的生活和工作方式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值