剑指 offer 动态规划算法题:0-1背包问题

文章介绍了如何使用动态规划方法解决背包问题,通过状态转移方程dp[i][j]=Math.max(value[i]+dp[i-1][j-weights[i]],dp[i-1][j])来确定最大价值。在代码实现中,利用滚动数组优化了空间复杂度,最终找到在给定背包重量限制下能获得的最大物品价值。
摘要由CSDN通过智能技术生成

题目:给定一个能承受最大重量为 bagWeight 的背包,和 m 件物品的价值列表 value 和重量列表 weights,求背包中能包含物品的最大价值。

分析:

        动态规划法,状态转移方程:dp[i][j] = Math.max(value[i] + dp[i-1][j - weights[i]], dp[i-1][j]); 前提是 j >= weights[i]。利用滚动数组,优化空间复杂度:dp[j] = Math.max(value[i] + dp[j - weights[i], dp[j])。dp[i][j] 表示最大重量为 j 的背包中所能包含的 [0, i]区间内的物品的最大价值。

求解:

/**
 * @param weights
 * @param bagWeight
 */
function package01(values: number[], weights: number[], bagWeight: number): number {
  const maxValues = new Array(bagWeight + 1).map((_, index) => {
    if (index >= weights[0]) {
      return values[0];
    }
    return 0;
  });
  const m = weights.length;
  for (let i = 1; i < m; i++) {
    for (let j = 0; j <= bagWeight; j++) {
      if (j >= weights[i]) {
        // 背包的空间足够放下第 i 个物品
        maxValues[j] = Math.max(values[i] + maxValues[j - weights[i]], maxValues[j]);
      }
    }
  }
  return maxValues[bagWeight];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薛定谔的猫96

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值