题解:运用并查集首先找出两个在环上的顶点(当两个顶点已经的father已经相等但是又再次出现就说明这两个顶点在环上)分别作为DFS的起点和终点。
问题描述
小明的实验室有N台电脑,编号1~N。原本这N台电脑之间有N-1条数据链接相连,恰好构成一个树形网络。在树形网络上,任意两台电脑之间有唯一的路径相连。
不过在最近一次维护网络时,管理员误操作使得某两台电脑之间增加了一条数据链接,于是网络中出现了环路。环路上的电脑由于两两之间不再是只有一条路径,使得这些电脑上的数据传输出现了BUG。
为了恢复正常传输。小明需要找到所有在环路上的电脑,你能帮助他吗?
输入格式
第一行包含一个整数N。
以下N行每行两个整数a和b,表示a和b之间有一条数据链接相连。
对于30%的数据,1 <= N <= 1000
对于100%的数据, 1 <= N <= 100000, 1 <= a, b <= N
输入保证合法。
输出格式
按从小到大的顺序输出在环路上的电脑的编号,中间由一个空格分隔。
样例输入
5
1 2
3 1
2 4
2 5
5 3
样例输出
1 2 3 5
#include<stdio.h>
#include<vector>
#include<algorithm>
#include<string.h>
using namespace std;
#define maxn 1000010
int father[maxn];
int path[maxn];
bool vis[maxn];
int star,end;
int find(int x)
{
int t=x;
while(t!=father[t])
{
t=father[t];
}
return t;
}
int join(int a,int b)
{
int x=find(a);
int y=find(b);
if(x!=y)
{
father[y]=x;
return 0;
}
else return 1;
}
vector <int>edge[maxn];
void DFS(int x,int num)
{
int i;
path[num]=x;
if(x==end)
{
sort(path,path+num+1);
for(i=0;i<=num;i++)//这里还有待深究
{
if(i==0) printf("%d",path[i]);
else printf(" %d",path[i]);
}
printf("\n");
return;
}
for(i=0;i<edge[x].size();i++)
{
int t=edge[x][i];
if(!vis[t])
{
vis[t]=true;
DFS(t,num+1);
}
}
}
int main()
{
int N,i,x,y;
memset(vis,0,sizeof(vis));
for(i=1;i<=maxn;i++)
{
father[i]=i;
}
scanf("%d",&N);
for(i=1;i<=N;i++)
{
scanf("%d%d",&x,&y);
if(join(x,y))
{
star=x;//若已知顶点在环上就不用这条线段就不链接在vector中了便于直接搜索。
end=y;
}
else{
edge[x].push_back(y);
edge[y].push_back(x);
}
}
DFS(star,0);
return 0;
}